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Text Representation Issues in 
Sentiment Analysis

• Unigram (bag of words)  
capture sentiment indicator 
terms 
could not capture negations 

• Add Bi-grams 
capture negation-polarity word 
pairs 
capture two-words sentiment 
phrases 

• Add tri-grams,quad-grams...  
capture sentiment phrases 
with many words



Difficulty with High Order n-grams
• Many variations 

"  
 

 
 
 

 
           

increase the dimensionality

• rare cases 
" 676 times in IMDB 
" 6 times  
" 4 times 
 
           

insufficient data for parameter estimation



Skip-grams

• n-gram templates matched loosely 

• Looseness parameterized by slop, the number of 
additional words  

• n-gram = skip-gram with slop 0  



Skip-gram Examples



Advantages of Skip-grams

• Group infrequent n-grams into a frequent skip-gram 

• Allow n-grams to borrow strength from each other  

• Easier learning 

• Better generalization



Difficulties with Skip-grams

• Huge number 

• Many are non-informative or noisy  
 
skip-gram " with slop 2 can match 
both "  and "  



Existing Use of Skip-grams in 
Sentiment Analysis

• Ask human assessors to pick informative skip-grams 

    limited by available domain knowledge 

  expensive 

• Build dense word vectors on top of skip-grams 

    information loss 

   less interpretable 
 



Goal of this Study

• Test whether skip-grams are helpful when used 
directly as features in sentiment analysis 

• Test different automatic regularization/feature 
selection strategies  

• Compare against n-grams and word vectors



Skip-gram Extraction
• Consider skip-grams with n<=5 and slop<=2  

(5-grams with 2 additional words in between) 

• Discard skip-grams with very low frequencies 
(<=5)

max n max slop # skip-grams on IMDB
1 0 2x10^4
2 0 1x10^5
3 0 2x10^5
5 0 4x10^5
2 1 3x10^5
3 1 9x10^5
5 1 1x10^6
2 2 6x10^5
3 2 2x10^6
5 2 3x10^6



L1 vs L2 regularization
Skip-gram features: huge number, correlated 

• L1:  
✓ shrink weights 
✓ select a subset of features 

  select one out of several correlated features 

• L2: 
✓ shrink weights 

   use all features 

✓ spread weight among correlated features 

compact model

robust model



L1+L2 regularization

• L1+L2: 

✓ shrink weights 

✓ select a subset of features 

✓ spread weight among correlated features 

compact model

robust model



Learning and Regularization
• L2-regularized linear SVM 

• L1-regularized linear SVM 

• L2-regularized Logistic Regression  

• L1-regularized Logistic Regression  

• L1+L2-regularized Logistic Regression  



Datasets

dataset positive negative

IMDB 25,000 reviews 
with ratings 7-10

25,000 reviews 
with ratings 1-4

Amazon Baby 
Product

136,461 reviews 
with ratings 4-5

32,950 reviews 
with ratings 1-2

Amazon Phone 
Product

47,970 reviews 
with ratings 4-5

22,241 reviews 
with ratings 1-2

Binary classification with neutral reviews ignored



Classification Accuracy with 
Skip-gram Features

• Blue line: moving from unigrams to bigrams gives substantial improvement 

• Blue line: using high-order n-grams gives marginal improvement 

• Green and red lines: increasing slop from 0 to 1 and 2 gives further improvement 

• max # features selected: L2: 10^6, L1: 10^4, L1+L2: 10^5

L2 LR L1 LR L1+L2 LR



# Features Used vs Accuracy



Observations on L1 vs L2
• L2: achieves better overall accuracy 

- Large training sets facilitate parameter estimation  

- Effective handling of correlated features 

• L1: produces much smaller models 

• L1+L2: good compromise



Skip-gram Feature Contribution

• Comparing left with middle: the fraction of unigrams increases;the fraction of 
slop 2 trigrams decreases. Many slop 2 trigrams are eliminated by L1. 

• In right: The standard n-grams with slop=0 only contribute to 20% of the total 
weight, and the remaining 80% is due to skip-grams with non-zero slops.

all features selected features weighted features



Comparison with Word Vectors

skip-gram word vector

AMAZON BABY 96.85 88.84

AMAZON PHONE 92.58 85.38

IMDB 91.26 92.58 / 85.0

- Word vectors work extremely well on the given test set 
(92.58%), but poorly on random test sets (85%). 



Other Results on IMDB

•  

- Among the methods which only use labeled 
data, skip-grams achieved the highest accuracy



Conclusion
• Skip-grams group similar n-grams together, 

facilitating learning and generalization 

• Using skip-grams achieves good sentiment analysis 
performance 

• L1+L2 regularization reduces the number of features 
significantly while maintaining good accuracy 

• Our code will be released soon at: 
https://github.com/cheng-li/pyramid
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