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Sentiment Analysis

An Amazon Product Review

Yriryriryr The front light is great and has not given me any eye fatigue
By Amazon Customer on March 14, 2016
Connectivity: Wi-Fi Only  Offer Type: With Special Offers = Verified Purchase

A Paperwhite is, in my opinion, the ultimate way to read. The front light is great and has not given me any eye fatigue, which I'm prone
to. If you are a heavy reader and are looking for an e-device, you will be doing your eyes a big favor by getting this over a Fire or other
color tablet.

» Comment Was this review helpful to you? | Yes No | Report abuse
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Sentiment Analysis

An IMDB Movie Review

6 out of 9 people found the following review useful:

: Total Disappointment

Author: @ from NC, USA
15 April 2015

A complete waste of time and a total let down after Transformers Prime. | died a little inside after watching episode 1, which was a struggle to
complete. | have no plans to watch any of the other episodes as even watching this one episode was just too painful. My 9-year-old even hates
it. He loved Prime, but he is totally disappointed in this one. | tried to like it, but it just isn't happening. Unless you want to be disappointed like

us, | recommend you stay far away. Hopefully the creators will realize what they have done and bring back Prime. Bad CGl, horrible plot, and
even worse character voice-overs. Total Disappointment. :(

Was the above review useful to you? Yes | No |
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6 out of 9 people found the following review useful:

Total Disappointment

Author: @ from NC, USA
15 April 2015

A complete waste of time and a total let down after Transformers Prime. | died a little inside after watching episode 1, which was a struggle to
complete. | have no plans to watch any of the other episodes as even watching this one episode was just too painful. My 9-year-old even hates
it. He loved Prime, but he is totally disappointed in this one. | tried to like it, but it just isn't happening. Unless you want to be disappointed like
us, | recommend you stay far away. Hopefully the creators will realize what they have done and bring back Prime. Bad CGl, horrible plot, and
even worse character voice-overs. Total Disappointment. :(

Was the above review useful to you? Yes | No

<waste:1, like:2, disappoint:1, worse:1,...>
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Positive, Negative



entiment Analysis with Binary
Text Classification Pipeline

6 out of 9 people found the following review useful:

Total Disappointment

n
Author: @ from NC, USA
15 April 2015

A complete waste of time and a total let down after Transformers Prime. | died a little inside after watching episode 1, which was a struggle to
complete. | have no plans to watch any of the other episodes as even watching this one episode was just too painful. My 9-year-old even hates

it. He loved Prime, but he is totally disappointed in this one. | tried to like it, but it just isn't happening. Unless you want to be disappointed like
us, | recommend you stay far away. Hopefully the creators will realize what they have done and bring back Prime. Bad CGl, horrible plot, and
even worse character voice-overs. Total Disappointment. :(

Was the above review useful to you? Yes | No

Bottleneck!
eature Vector <waste: 1, like:2, disappoint: 1, worse:1,...>
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Classifier Logistic Regression, SVM

Prediction Positive, Negative



lext Representation Issues In
Sentiment Analysis

* Unigram (bag of words) : : :
capture sentiment indicator L like th'_s movie.
terms l

<l:1, like:1, this:1, movie;:1>

v
Logistic Regression
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lext Representation Issues In
Sentiment Analysis

* Unigram (bag of words)

capture sentiment indicator I d_on t like this movie.

RS- S —tettammstERD
terms l

could not capture negations

<I:1, don't:1, like:1, this:1, movie;1>
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lext Representation Issues In
Sentiment Analysis

* Unigram (bag of words)
capture sentiment indicator

lerms
could not capture negations

<l:1, don't:1, like:1, | don't:1, don't like:1,...>

[ dpn't like this movie.

et e

* Add Bi-grams
capture negation-polarity word

pairs v
Logistic Regression
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lext Representation Issues In
Sentiment Analysis

* Unigram (bag of words) How could anyone sit through
capture sentiment indicator this movie?
lerms — : N
could not capture negations l

<how:1, could:1, sit through:1, anyone sit:1,...>

* Add Bi-grams
capture negation-polarity word

pairs +
capture two-words sentiment Logistic Regression
phrases

Negative




Text Representation Issues In
Sentiment Analysis

* Unigram (bag of words) Why does anyone waste time or m
capture sentiment indicator , , . .
forms why did I waste time watching it?
could not capture negations l

* Add Bi-grams <waste time:2, waste:2, money:1,...>
capture negation-polarity word
pairs l
capture two-words sentiment Logistic Regression
phrases

Negative




Text Representation Issues In
Sentiment Analysis

» Unigram (bag of words) Don't waste your time on this
capture sentiment indicator .
movie.
terms R——— ——

could not capture negations ,
So annoying and such a waste

* Add Bi-grams of my time.
capture negation-polarity Word s e el
pairs
capture two-words sentiment A complete waste of time.
phrases B e

| [ wasted a lot of time on it.

* Add tri-grams,quad-grams... —— ——
capture sentiment phrases . ]
with many words I wasted too much time on it.




Difficulty with High Order n-grams

* Many variations

waste your time'
‘'waste of my time"
"waste of time"
'wasted a lot of time"
'wasted too much time"

-¥ increase the dimensionality

® rare cases
'waste of time": 676 times in IMDB

'waste more time": 6 times
‘waste your time": 4 times
- INnsufficient data for parameter estimation




Skip-grams

* n-gram templates matched loosely

* Looseness parameterized by slop, the number of
additional words

* nN-gram = skip-gram with slop O



Skip-gram Examples

skipgram and count

matched ngrams and count

skip movie (slop 2) 42 |skip this movie 28 |skip this pointless movie 1
skip the movie 8 skipping all the movies (of this sort) 1
skip watching this movie 1

it fail (slop 1) 358 |it fails 279 |it completely fails 5
it even fails 5 it simply fails 3

whole thing (slop 1) 729 |whole thing 682 |whole horrific thing 1
whole damn thing 5

waste time (slop 1) 1562|waste time 109 |waste of time 676
waste your time 4 waste more time 6

only problem (slop 1) 1481 |only problem 1378 |only tiny problem 4
only minor problem 11

never leak (slop 2) 1053 |never leak 545 |never a urine leak (problem) 1
never have leak 86 |never have any leak 77

no smell (slop 1) 445 |no smell 340 |no medicine-like smell 1
no bad smell 13 |no annoying smell 5!

it easy to clean and (slop 2) 314 |it is easy to wipe clean and 3 it is easy to keep clean and 3
it is so easy to clean and 16

I have to return (slop 2) 216 |I have to return 151 |I finally have to return 1
I have never had to return 1 I do not have to return 4

good service (slop 2) 209 |good service 131 |good price and service 1
good and fast service 2




Advantages of Skip-grams

Group Iinfrequent n-grams into a frequent skip-gram
Allow n-grams to borrow strength from each other
Easier learning

Better generalization



Difficulties with Skip-grams

* Huge number

 Many are non-informative or noisy

skip-gram "I recommend" with slop 2 can match
both T highly recommend” and I do not recommend"



Existing Use of Skip-grams in
Sentiment Analysis

* Ask human assessors to pick informative skip-grams
x limited by available domain knowledge
X expensive

* Build dense word vectors on top of skip-grams

x Information loss

x less interpretable



Goal of this Study

e Jest whether skip-grams are helpful when used
directly as features in sentiment analysis

* Test different automatic regularization/teature
selection strategies

 Compare against n-grams and word vectors



Skip-gram Extraction

» Consider skip-grams with n<=5 and slop<=2
(5-grams with 2 additional words in between)

* Discard skip-grams with very low frequencies
(<=5)

___________________ maxn.____ . . maxslop____ i#skip-grams on IMDB
_________________________ 1 e O 2x10M
- N O e XAQNS
R - N N O 2X107NS
S N R O Ax107Ns
- N L A 3x107s
R - N N L OX107NS
s N N X0
- N s ox107s .
R - N N e 2x1076
5 > 31016




L1 vs L2 regularization

- Skip-gram features: huge number, correlated
L1: miny loss + Al|wl|:
v shrink weights
v select a subset of features ~—3p| compact model
x select one out of several correlated features
L2 min,, loss + \||wl||3
v shrink weights

x Uuse all features

v spread weight among correlated features  ~——| robust model



L 1+L2 regularization

o L1+L2: miny, loss + Ae||w||; + A(1 — a)||w||3

v shrink weights

#»| compact model

v select a subset of features

v spread weight among correlated features m—-&

¢



Learning and Regularization

L2-regularized linear SVM

min,, Zﬁvzl(max(o, 1 —ywhx;))? + )\%||w||§
L1-regularized linear SVM

min,, Z,ﬁil(max(o, 1 —ysw’ z;))? + M|w||s
L2-regularized Logistic Regression

miny, — 3 S, yiw” @ +log(1+ e ™) + A3[|wl[3
L1-regularized Logistic Regression

min., —% Zfil yiw? i + log(1 + ewT‘”) + Al|lw||1
L1+L2-regularized Logistic Regression

ming — % Y i, yiw’ z; + log(1 + e Ti) + Aal|w||1 + A1 — )L ||wl3



Datasets

Binary classitication with neutral reviews ignored

dataset positive negative

25,000 reviews

; 25,000 reviews
~ with ratings 7-10 |

with ratings 1-4

Amazon Baby
Product

136,461 reviews 32,950 reviews

Amazon Phone
Product

with ratings 4-5

47,970 reviews
with ratings 4-5

with ratings 1-2

................................................................................................................................................................................

22,241 reviews
with ratings 1-2




Classification Accuracy with
Skip-gram Features

accuracy
O
B

3

«— max slop=0|]
«— max slop=1|]|

*— max slop=2

3

4 5

maXx n

L2 LR

accuracy

«— max slop=0|]

*— max slop=1
*— max slop=2

4

maXx n

L1 LR

accuracy

«— max slop=0
«— max slop=1]|]|

max # features selected: L2: 1076, L1: 1074, L1+L2: 1075

L1+L2 LR

Blue line: using high-order n-grams gives marginal improvement

Blue line: moving from unigrams to bigrams gives substantial improvement

Green and red lines: increasing slop from 0 to 1 and 2 gives further improvement




# Features Used vs Accuracy
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Observationson L1 vs L2

e |2: achieves better overall accuracy
- Large training sets facilitate parameter estimation
- Effective handling of correlated features

* L1: produces much smaller models

 L1+L2: good compromise



Skip-gram Feature Contribution

n=3,slop=1

n=2,slop=2

n=3,slop=2

all features selected features weighted features

« Comparing left with middle: the fraction of unigrams increases;the fraction of
slop 2 trigrams decreases. Many slop 2 trigrams are eliminated by L1.

* Inright: The standard n-grams with slop=0 only contribute to 20% of the total
weight, and the remaining 80% is due to skip-grams with non-zero slops.



Comparison with Word Vectors

skip-gram word vector
"""
MAZONPHONE|  sese | s
 woe | e | seseieso

- Word vectors work extremely well on the given test set
(92.58%), but poorly on random test sets (85%).



Other Results on IMDB

classifier features training documents accuracy
LR with dropout regularization [21]|bigrams 25,000 labeled 91.31
NBSVM [23] bigrams 25,000 labeled 91.22
SVM with L2 regularization structural parse tree features + unigrams [16] 25,000 labeled 82.8
LR L1+L2 regularization 5-grams selected by compressive feature learning [20](25,000 labeled 90.4
SVM word vectors trained by WRRBM 6] 25,000 labeled 89.23
SVM word vectors [15] 25,000 labeled + 50,000 unlabeled|88.89
LR with dropout regularization [21]|bigrams 25,000 labeled + 50,000 unlabeled|91.98
LR paragraph vectors [14] 25,000 labeled + 50,000 unlabeled [92.58
LR with L2 regularization skip-grams 25,000 labeled 91.63
SVM with L2 regularization skip-grams 25,000 labeled 91.71
LR with L1+4+L2 regularization skip-grams 25,000 labeled 91.26

- Among t

data, ski

ne methods which only use labeled
0-grams achieved the highest accuracy




Conclusion

Skip-grams group similar n-grams together,
facilitating learning and generalization

Using skip-grams achieves good sentiment analysis
performance

L1+L2 regularization reduces the number of features
significantly while maintaining good accuracy

Our code will be released soon at:
https://github.com/cheng-li/pyramid



Thank You



