Conditional Bernoulli Mixtures for Multi-label Classification

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam

Northeastern University

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam Conditional Bernoulli Mixtures for Multi-label Classification

(4) (E) (A) (E) (A)

- binary classification: 1 out of 2
- multi-class classification: 1 out of many
- multi-label classification: many out of many

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam Conditional Bernoulli Mixtures for Multi-label Classification

3 × 4 3 ×

Multi-label Classification: Example

News Article Categorization

Breakingviews

Twitter may score big with football digital rights

By Jennifer Saba | April 5, 2016

The author is a Reuters Breakingviews columnist. The opinions expressed are her own.

Twitter may finally be gaining some ground. Chief Executive Jack Dorsey's social-media company has won the rights to stream National Football League games on 10 Thursday nights for roughly \$10 million, according to technology site Re/code. That's about the price of a one-minute Super Bowl commercial. After fumbling with stalled growth in the number of users, Twitter may have found a cheap way to stay on the field with rivals like Facebook.

Internet ✓, crime ✗, NFL ✓, government ✗, Asia ✗,
sports ✓, politics ✗, sports business ✓, Twitter ✓

Conditional Bernoulli Mixtures for Multi-label Classification

Multi-label Classification: Example

Image Tagging

airport ≯, animal ≯, clouds ✓, book ≯, lake ✓, sunset ✓, sky ✓, cars ≯, water ✓, reflection ✓

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam

Conditional Bernoulli Mixtures for Multi-label Classification

Multi-label Classification: Mathematical Formulation

$$\mathbf{x} \xrightarrow{h} \mathbf{y} = \overbrace{[1,0,0,1,0,...,1]}^{\mathsf{length } L}$$

- L: # candidate labels
- x: instance
- y: label subset, written as binary vector of length L
- $\textbf{y}_\ell = 1 \text{ if label } \ell \text{ occurs}$

ヨット イヨット イヨッ

Naive Approach: Predict Each Label Independently

Binary Relevance: not always effective

- water: easy to predict directly
- reflection: hard to predict directly (based on the given feature representation)

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam Conditional Bernoulli Mixtures for Multi-label Classification

Better Solution: Exploit Label Dependencies

let easy labels help difficult labels

- water: easy to predict directly
- reflection: often co-occurs with water

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam Conditional Bernoulli Mixtures for Multi-label Classification

Existing approaches

Power-Set: treat each subset as a class + multi-class
 ② 2^L ⇒ poor scalability; cannot predict unseen subsets

通 とう ほうとう ほうど

Existing approaches

- Power-Set: treat each subset as a class + multi-class
 ② 2^L ⇒ poor scalability; cannot predict unseen subsets
- Conditional Random Field: manually specify label dependencies with a graphical model
 Only model specified (e.g., all pair-wise) dependencies

Existing approaches

- Power-Set: treat each subset as a class + multi-class
 ② 2^L ⇒ poor scalability; cannot predict unseen subsets
- Conditional Random Field: manually specify label dependencies with a graphical model
 Only model specified (e.g., all pair-wise) dependencies
- Classifier Chain: h(x, y₁, y₂, ..., y_{ℓ-1}) → y_ℓ
 is hard to predict the jointly most probable subset

Idea: approximate $p(\mathbf{y}|\mathbf{x})$ by a Conditional Bernoulli Mixture (CBM) with fully factorized mixture components

A B K A B K

Idea: approximate $p(\mathbf{y}|\mathbf{x})$ by a Conditional Bernoulli Mixture (CBM) with fully factorized mixture components

• Step 1. write $p(\mathbf{y})$ as a mixture

Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^k p(\mathbf{y}; \boldsymbol{\beta}^k)$$

ヨト イヨト イヨト

Idea: approximate $p(\mathbf{y}|\mathbf{x})$ by a Conditional Bernoulli Mixture (CBM) with fully factorized mixture components

Step 1. write p(y) as a mixture

Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^k p(\mathbf{y}; \boldsymbol{\beta}^k)$$

Step 2: factorize component density

Bernoulli Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^k \prod_{\ell=1}^{L} b(y_\ell; \boldsymbol{\beta}_\ell^k)$$

Idea: approximate $p(\mathbf{y}|\mathbf{x})$ by a Conditional Bernoulli Mixture (CBM) with fully factorized mixture components

Step 1. write $p(\mathbf{y})$ as a mixture

Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^k p(\mathbf{y}; \boldsymbol{\beta}^k)$$

Step 2: factorize component density

Bernoulli Mixture:
$$p(\mathbf{y}) = \sum_{k=1}^{K} \pi^k \prod_{\ell=1}^{L} b(y_\ell; \boldsymbol{\beta}_\ell^k)$$

Step 3: condition on x

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k | \mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Conditional Bernoulli Mixtures for Multi-label Classification

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

 $\begin{aligned} \pi(z=k|\mathbf{x};\alpha): \text{ probability of assigning } \mathbf{x} \text{ to component } k; \\ & \text{instantiated with a multi-class classifier} \\ & \text{e.g., multinomial logistic regression with weight } \alpha \\ b(y_{\ell}|\mathbf{x};\beta_{\ell}^{k}): \text{ probability of } \mathbf{x} \text{ having label } y_{\ell} \text{ in component } k; \\ & \text{instantiated with a binary classifier} \\ & \text{e.g., binary logistic regression with weight } \beta_{\ell}^{k}. \end{aligned}$

$$\begin{array}{ll} \mathsf{Prediction:} & \operatorname{argmax}_{\mathbf{y}} p(\mathbf{y} | \mathbf{x}) \\ \mathbf{y} \end{array}$$

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

- Property 1: automatically capture label dependencies
- Property 2: a flexible reduction method
- Property 3: easily adjust the complexity by changing the number of components K
- Property 4: simple training with EM
- Property 5: fast prediction by dynamic programming

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 1: automatically capture label dependencies

$$p(\mathbf{y}|\mathbf{x})
eq \prod_{\ell=1}^{L} p(y_{\ell}|\mathbf{x})$$

analogy: Gaussian mixture with fully factorized components can represent a complex joint

ヨト イヨト イヨト

Property 1: capture label dependencies - illustration

- $p(\mathbf{y}|\mathbf{x})$ estimation provided by CBM
- showing only top 4 components; row = component;
 bar = individual label probability; π = mixture coefficient

・ 同・ ・ ヨ・

Property 1: capture label dependencies - illustration

- marginal probability = averaging bars weighted by π
- p(water|x) = 0.69, p(lake|x) = 0.56, p(sunset|x) = 0.66
- $p(reflection|\mathbf{x}) = 0.32$
 - \Rightarrow missed by independent prediction $\,\, \ensuremath{\mathfrak{S}}$

Property 1: capture label dependencies - illustration

reflection is positively correlated with lake, water, and sunset;
 ρ(y|x) ⇒ ρ_{reflection,lake} = 0.5, ρ_{reflection,water} = 0.4,
 ρ_{reflection,sunset} = 0.17

- ロト - (月) - (日) - (日)

Property 1: capture label dependencies - illustration

$$\begin{split} &p(\{\texttt{clouds, lake, sky, sunset, water, reflection}\}|\mathbf{x}) = 0.09\\ &p(\{\texttt{clouds, lake, sky, sunset, water}\}|\mathbf{x}) = 0.06 \end{split}$$

 \Rightarrow predicting the most probable subset includes reflection \bigcirc

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 2: a flexible reduction method

- multi-label \Rightarrow multi-class + binary
- instantiated by many binary/multi-class classifiers
 e.g., logistic regressions, gradient boosted trees, neural networks

ヨト イヨト イヨト

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 3: easily adjust the complexity by changing the number of components K

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam

Conditional Bernoulli Mixtures for Multi-label Classification

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 4: Simple Training with EM Idea:

- maximum likelihood
- hidden variables \Rightarrow EM
- update parameters \Rightarrow binary and multi-class classifier learning

通 とう ほうとう ほうど

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 4: Simple Training with EM

Denote the posterior membership distribution $p(z_n | \mathbf{x}_n, \mathbf{y}_n)$ as $\Gamma(z_n) = (\gamma_n^1, \gamma_n^2, ..., \gamma_n^K).$

E step: Re-estimate posterior membership probabilities:

$$\gamma_n^k = \frac{\pi(z_n = k | \mathbf{x}_n; \alpha) \prod_{\ell=1}^L b(y_{n\ell} | \mathbf{x}_n; \beta_\ell^k)}{\sum_{k=1}^K \pi(z_n = k | \mathbf{x}_n; \alpha) \prod_{\ell=1}^L b(y_{n\ell} | \mathbf{x}_n; \beta_\ell^k)}$$

ヨット イヨット イヨッ

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 4: Simple Training with EM

M step: Update model parameters. Decompose into simple classification problems:

$$\begin{split} \alpha_{new} &= \arg\min_{\alpha} \sum_{n=1}^{N} \mathbb{KL}(\Gamma(z_n) || \pi(z_n | \mathbf{x}_n; \alpha)) \\ & (\text{multi-class classification with soft target labels}) \\ \beta_{\ell \ new}^k &= \arg\min_{\beta_{\ell}^k} \sum_{n=1}^{N} \gamma_n^k \mathbb{KL}(\text{Ber}(Y_{n\ell}; y_{n\ell}) || b(Y_{n\ell} | \mathbf{x}_n; \beta_{\ell}^k)) \\ & (\text{weighted binary classification}) \end{split}$$

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam

Conditional Bernoulli Mixtures for Multi-label Classification

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 5: Fast Prediction by Dynamic Programming A common difficulty in prediction:

how to find argmaxy p(y|x) without enumerating 2^L possibilities of y?

通 とう ほうとう ほうど

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 5: Fast Prediction by Dynamic Programming A common difficulty in prediction:

how to find argmaxy p(y|x) without enumerating 2^L possibilities of y?

Existing solutions used in Power-Set, CRF, and Classifier Chain:

- \bigcirc restrict to **y** in training set \Rightarrow will not predict unseen **y**
- \bigcirc approximate inference \Rightarrow suboptimal

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Property 5: Fast Prediction by Dynamic Programming A common difficulty in prediction:

how to find argmaxy p(y|x) without enumerating 2^L possibilities of y?

Existing solutions used in Power-Set, CRF, and Classifier Chain:

- \bigcirc restrict to **y** in training set \Rightarrow will not predict unseen **y**
- \bigcirc approximate inference \Rightarrow suboptimal

CBM:

 \bigcirc efficiently find the exact $\operatorname{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x})$ by DP

CBM:
$$p(\mathbf{y}|\mathbf{x}) = \sum_{k=1}^{K} \pi(z = k|\mathbf{x}; \alpha) \prod_{\ell=1}^{L} b(y_{\ell}|\mathbf{x}; \beta_{\ell}^{k})$$

Summary

- Property 1: automatically capture label dependencies
- © Property 2: a flexible reduction method
- Property 3: easily adjust the complexity by changing the number of components K
- Property 4: simple training with EM
- Property 5: fast prediction by dynamic programming

通 とう ほう うちょう

dataset	SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE	
domain	image		text		text		video		image	
#labels / #label subsets	6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints	294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K

dataset	SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE	
domain	image		text		text		video		image	
#labels / #label subsets	6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints	294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K

2 instantiations of CBM: LR and GB

(E) < E)</p>

dataset	SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE	
domain	image		text		text		video		image	
#labels / #label subsets	6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints	294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K

- 2 instantiations of CBM: LR and GB
- 8 baselines: BinRel, PowSet, CC, PCC, ECC-label, ECC-subset, CDN, pairCRF

dataset	SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE	
domain	image		text		text		video		image	
#labels / #label subsets	6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints	294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K

- 2 instantiations of CBM: LR and GB
- 8 baselines: BinRel, PowSet, CC, PCC, ECC-label, ECC-subset, CDN, pairCRF
- evaluation measure: subset accuracy

dataset		SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE		
domain		image		te>	text		text		video		image	
#labels / #label subsets		6 /	15	103 /	799	22 /	1341	101 /	6555	81 /	18K	
#features / #datapoints		294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K	
Method	d Learner											
BinRel	LR	51.5		40.4		25.3		9.6		24.7		
PowSet	LR	68.1		50.2		28.2		9.0		26.6		
CC	LR	62.9		48.2		26.2		10.9		26.0		
PCC	LR	64	.8	48.3		26.8		10.9		26.3		
ECC-label	LR	60	.6	46.5		26.0		11.3		26.0		
ECC-subset	LR	63	.1	49.2		25.9		11.5		26.0		
CDN	LR	59.9		12.6		16.8		5.4		17	.1	
pairCRF	linear	68.8		46.4		28.1		10.3		26.4		
CBM	LR	69.7		49.9		28.7		13.5		27.3		

with LR learner, CBM is the best on 4 out of 5 datasets

Experimental Results on Benchmark Datasets

dataset		SCENE		RCV1		TMC2007		MEDIAMILL		NUS-WIDE	
domain		image		tex	text		text		video		age
#labels / #label subsets		6/	15	103 /	799	22 /	1341	101 /	6555	81 /	18K
#features / #datapoints		294 /	2407	47K /	6000	49K /	29K	120 /	44K	128 /	270K
Method	Learner										
BinRel	LR	51	.5	40.4		25.3		9.6		24.7	
PowSet	LR	68.1		50.2		28.2		9.0		26.6	
CC	LR	62.9		48.2		26.2		10.9		26.0	
PCC	LR	64.8		48.3		26.8		10.9		26.3	
ECC-label	LR	60	.6	46.5		26.0		11.3		26.0	
ECC-subset	LR	63	.1	49.2		25.9		11.5		26.0	
CDN	LR	59	.9	12.6		16.8		5.4		17.1	
pairCRF	linear	68	.8	46.4		28.1		10.3		26.4	
CBM	LR	69.7		49.9		28.7		13.5		27.3	
BinRel	GB	59.3		30.1		25.4		11.2		24.4	
PowSet	GB	70.5		38.2		23.1		10.1		23.6	
CBM	GB	70.5		43.0		27.5		14.1		26.5	

- ► replace LR with GB ⇒ further improvements on 2 datasets SCENE: 69.7→70.5; MEDIAMILL: 13.5→14.1
- use different learners for different applications

- proposed a new multi-label model CBM
- enjoys many nice properties
- performs well on real data
- code available at https://github.com/cheng-li/pyramid

Thank You!

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam Conditional Bernoulli Mixtures for Multi-label Classification

イロン 不良と 不良と 不良と