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Task: Multi-label Classification

I binary classification: 1 out of 2

I multi-class classification: 1 out of many

I multi-label classification: many out of many
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Multi-label Classification: Example

News Article Categorization

Internet 3, crime 7, NFL 3, government 7, Asia 7,

sports 3, politics 7, sports business 3, Twitter 3
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Multi-label Classification: Example

Image Tagging

airport 7, animal 7, clouds 3, book 7, lake 3,

sunset 3, sky 3, cars 7, water 3, reflection 3
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Multi-label Classification: Mathematical Formulation

x
h−→ y = [

length L︷ ︸︸ ︷
1, 0, 0, 1, 0, ..., 1]

L: # candidate labels

x: instance

y: label subset, written as binary vector of length L

y` = 1 if label ` occurs
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Naive Approach: Predict Each Label Independently

Binary Relevance: not always effective

I water: easy to predict directly

I reflection: hard to predict directly (based on the given
feature representation)

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam Conditional Bernoulli Mixtures for Multi-label Classification



Better Solution: Exploit Label Dependencies

let easy labels help difficult labels

I water: easy to predict directly

I reflection: often co-occurs with water
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How to Model Label Dependencies?

Existing approaches

I Power-Set: treat each subset as a class + multi-class
h 2L ⇒ poor scalability; cannot predict unseen subsets
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How to Model Label Dependencies?

Existing approaches

I Power-Set: treat each subset as a class + multi-class
h 2L ⇒ poor scalability; cannot predict unseen subsets

I Conditional Random Field: manually specify label
dependencies with a graphical model
h only model specified (e.g., all pair-wise) dependencies
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How to Model Label Dependencies?

Existing approaches

I Power-Set: treat each subset as a class + multi-class
h 2L ⇒ poor scalability; cannot predict unseen subsets

I Conditional Random Field: manually specify label
dependencies with a graphical model
h only model specified (e.g., all pair-wise) dependencies

I Classifier Chain: h(x, y1, y2, ..., y`−1)→ y`
h hard to predict the jointly most probable subset
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

Idea: approximate p(y|x) by a Conditional Bernoulli Mixture
(CBM) with fully factorized mixture components
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

Idea: approximate p(y|x) by a Conditional Bernoulli Mixture
(CBM) with fully factorized mixture components

I Step 1. write p(y) as a mixture

Mixture: p(y) =
K∑

k=1

πkp(y;βk)
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

Idea: approximate p(y|x) by a Conditional Bernoulli Mixture
(CBM) with fully factorized mixture components

I Step 1. write p(y) as a mixture

Mixture: p(y) =
K∑

k=1

πkp(y;βk)

I Step 2: factorize component density

Bernoulli Mixture: p(y) =
K∑

k=1

πk
L∏

`=1

b(y`;β
k
` )
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

Idea: approximate p(y|x) by a Conditional Bernoulli Mixture
(CBM) with fully factorized mixture components

I Step 1. write p(y) as a mixture

Mixture: p(y) =
K∑

k=1

πkp(y;βk)

I Step 2: factorize component density

Bernoulli Mixture: p(y) =
K∑

k=1

πk
L∏

`=1

b(y`;β
k
` )

I Step 3: condition on x

CBM: p(y|x) =
K∑

k=1

π(z = k |x;α)
L∏

`=1

b(y`|x;βk
` )
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

π(z = k |x;α): probability of assigning x to component k;
instantiated with a multi-class classifier
e.g., multinomial logistic regression with weight α

b(y`|x;βk
` ): probability of x having label y` in component k ;

instantiated with a binary classifier
e.g., binary logistic regression with weight βk

` .

Prediction: argmax
y

p(y|x)
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

î Property 1: automatically capture label dependencies

î Property 2: a flexible reduction method

î Property 3: easily adjust the complexity by changing the
number of components K

î Property 4: simple training with EM

î Property 5: fast prediction by dynamic programming
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 1: automatically capture label dependencies

p(y|x) 6=
L∏

`=1

p(y`|x)

analogy: Gaussian mixture with fully factorized components can
represent a complex joint
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

Property 1: capture label dependencies – illustration

I p(y|x) estimation provided by CBM

I showing only top 4 components; row = component;
bar = individual label probability; π = mixture coefficient
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

Property 1: capture label dependencies – illustration

I marginal probability = averaging bars weighted by π

I p(water|x) = 0.69, p(lake|x) = 0.56, p(sunset|x) = 0.66

I p(reflection|x) = 0.32
⇒ missed by independent prediction h
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

Property 1: capture label dependencies – illustration

I reflection is positively correlated with lake, water, and
sunset;
p(y|x)⇒ ρreflection,lake = 0.5, ρreflection,water = 0.4,
ρreflection,sunset = 0.17

Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed Aslam Conditional Bernoulli Mixtures for Multi-label Classification



Proposed Model: Conditional Bernoulli Mixtures (CBM)

Property 1: capture label dependencies – illustration

p({clouds, lake, sky, sunset, water, reflection}|x) = 0.09

p({clouds, lake, sky, sunset, water}|x) = 0.06

⇒ predicting the most probable subset includes reflection î
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 2: a flexible reduction method

I multi-label ⇒ multi-class + binary

I instantiated by many binary/multi-class classifiers
e.g., logistic regressions, gradient boosted trees, neural
networks
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 3: easily adjust the complexity by changing the
number of components K
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 4: Simple Training with EM

Idea:

I maximum likelihood

I hidden variables ⇒ EM

I update parameters ⇒ binary and multi-class classifier learning
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 4: Simple Training with EM

Denote the posterior membership distribution p(zn|xn, yn) as
Γ(zn) = (γ1n , γ

2
n , ..., γ

K
n ).

E step: Re-estimate posterior membership probabilities:

γkn =
π(zn = k|xn;α)

∏L
`=1 b(yn`|xn;βk

` )∑K
k=1 π(zn = k |xn;α)

∏L
`=1 b(yn`|xn;βk

` )
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 4: Simple Training with EM

M step: Update model parameters. Decompose into simple
classification problems:

αnew = argmin
α

N∑
n=1

KL(Γ(zn)||π(zn|xn;α))

(multi-class classification with soft target labels)

βk
` new = argmin

βk
`

N∑
n=1

γknKL(Ber(Yn`; yn`)||b(Yn`|xn;βk
` ))

(weighted binary classification)
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 5: Fast Prediction by Dynamic Programming

A common difficulty in prediction:

I how to find argmaxy p(y|x) without enumerating 2L

possibilities of y?
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 5: Fast Prediction by Dynamic Programming

A common difficulty in prediction:

I how to find argmaxy p(y|x) without enumerating 2L

possibilities of y?

Existing solutions used in Power-Set, CRF, and Classifier Chain:

h restrict to y in training set ⇒ will not predict unseen y

h approximate inference ⇒ suboptimal
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Property 5: Fast Prediction by Dynamic Programming

A common difficulty in prediction:

I how to find argmaxy p(y|x) without enumerating 2L

possibilities of y?

Existing solutions used in Power-Set, CRF, and Classifier Chain:

h restrict to y in training set ⇒ will not predict unseen y

h approximate inference ⇒ suboptimal

CBM:

î efficiently find the exact argmaxy p(y|x) by DP
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Proposed Model: Conditional Bernoulli Mixtures (CBM)

CBM: p(y|x) =
K∑

k=1

π(z = k|x;α)
L∏

`=1

b(y`|x;βk
` )

Summary

î Property 1: automatically capture label dependencies

î Property 2: a flexible reduction method

î Property 3: easily adjust the complexity by changing the
number of components K

î Property 4: simple training with EM

î Property 5: fast prediction by dynamic programming
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Experimental Results on Benchmark Datasets

I 5 Datasets of different types

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K
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Experimental Results on Benchmark Datasets

I 5 Datasets of different types

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

I 2 instantiations of CBM: LR and GB

I 8 baselines: BinRel, PowSet, CC, PCC, ECC-label,
ECC-subset, CDN, pairCRF
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Experimental Results on Benchmark Datasets

I 5 Datasets of different types

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

I 2 instantiations of CBM: LR and GB

I 8 baselines: BinRel, PowSet, CC, PCC, ECC-label,
ECC-subset, CDN, pairCRF

I evaluation measure: subset accuracy
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Experimental Results on Benchmark Datasets

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

Method Learner

BinRel LR 51.5 40.4 25.3 9.6 24.7
PowSet LR 68.1 50.2 28.2 9.0 26.6

CC LR 62.9 48.2 26.2 10.9 26.0
PCC LR 64.8 48.3 26.8 10.9 26.3

ECC-label LR 60.6 46.5 26.0 11.3 26.0
ECC-subset LR 63.1 49.2 25.9 11.5 26.0

CDN LR 59.9 12.6 16.8 5.4 17.1
pairCRF linear 68.8 46.4 28.1 10.3 26.4

CBM LR 69.7 49.9 28.7 13.5 27.3

I with LR learner, CBM is the best on 4 out of 5 datasets
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Experimental Results on Benchmark Datasets

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
domain image text text video image

#labels / #label subsets 6 / 15 103 / 799 22 / 1341 101 / 6555 81 / 18K
#features / #datapoints 294 / 2407 47K / 6000 49K / 29K 120 / 44K 128 / 270K

Method Learner

BinRel LR 51.5 40.4 25.3 9.6 24.7
PowSet LR 68.1 50.2 28.2 9.0 26.6

CC LR 62.9 48.2 26.2 10.9 26.0
PCC LR 64.8 48.3 26.8 10.9 26.3

ECC-label LR 60.6 46.5 26.0 11.3 26.0
ECC-subset LR 63.1 49.2 25.9 11.5 26.0

CDN LR 59.9 12.6 16.8 5.4 17.1
pairCRF linear 68.8 46.4 28.1 10.3 26.4

CBM LR 69.7 49.9 28.7 13.5 27.3

BinRel GB 59.3 30.1 25.4 11.2 24.4
PowSet GB 70.5 38.2 23.1 10.1 23.6
CBM GB 70.5 43.0 27.5 14.1 26.5

I replace LR with GB ⇒ further improvements on 2 datasets
SCENE: 69.7→70.5; MEDIAMILL: 13.5→14.1

I use different learners for different applications
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Conclusion

I proposed a new multi-label model CBM

I enjoys many nice properties

I performs well on real data

I code available at https://github.com/cheng-li/pyramid
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Thank You!
î
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