
A Pipeline for Optimizing F1-Measure in Multi-Label Text Classification

Bingyu Wang∗, Cheng Li∗, Virgil Pavlu∗, Jay Aslam∗
∗College of Computer and Information Science

Northeastern University, Boston, MA, United States
{rainicy, chengli, vip, jaa}@ccs.neu.edu

Abstract—Multi-label text classification is the machine learn-
ing task wherein each document is tagged with multiple
labels, and this task is uniquely challenging due to high
dimensional features and correlated labels. Such text classifiers
need to be regularized to prevent severe over-fitting in the high
dimensional space, and they also need to take into account label
dependencies in order to make accurate predictions under un-
certainty. Many classic multi-label learning algorithms focus on
incorporating label dependencies in the model training phase
and optimize for the strict set-accuracy measure. We propose a
new pipeline which takes such algorithms and improves their
F1-performance with careful training regularization and a new
prediction strategy based on support inference, calibration
and GFM, to the point that classic multi-label models are
able to outperform recent sophisticated methods (PDsparse,
SPEN) and models (LSF, CFT, CLEMS) designed specifically
to be multi-label F-optimal. Beyond performance and practical
contributions, we further demonstrate that support inference
acts as a strong regularizer on the label prediction structure.

Keywords-multi-label; f-measure; text classification

I. INTRODUCTION

Multi-label text classification is challenging, first due to

label sets that exhibit complex dependency structures: Text

labels such as election and politics are dependent
variables in general, so independent predictions per label

(Binary Relevance method) is unlikely to work well [1]. La-

bels can be many, so learning approaches dealing explicitly

with the exponential number of label subsets (e.g. the Pow-

erSet method [1]) are infeasible; even when feasible, they

suffer from scarce data and limited label subsets observed

during training. In recent years, there has been an growing

interest in developing multi-label methods that are capable

of modeling label dependencies in the meantime avoiding

exponential computational complexity. Examples include

probabilistic classifier chains [2], conditional random fields

[3], and conditional Bernoulli mixtures [4]. And the second

challenge is that the commonly used bag-of-words feature

representation is high dimensional and sparse. For example,

the WISE dataset has 301,561 unigram features. If ngram

features are further included, the feature size would grow

dramatically. Model training without careful regularization

can lead to severe over-fitting. This is especially a problem

for high-complexity classifiers.

Formally, in a multi-label classification problem, we are

given a set of label candidates L = {1, 2, ..., L}. Every

datapoint x ∈ R
D matches a subset of labels y ⊆ L, which

is often also written in the form of a binary label vector

y ∈ {0, 1}L, with each bit yl indicating the presence or

absence of the corresponding label. The goal is to build

a classier h : RD �→ {0, 1}L which maps an instance to

a subset of labels. The label subset y can be of arbitrary

size (written as |y| = ||y||1). The subset accuracy measure,

which is usually reported, gives for each test datapoint a

score of 1 if the exact label set is predicted and 0 otherwise

and it is usually optimized by maximum likelihood over sets.

In practice however, and particularly in industry, the

F-measure, which gives partial rewards for subset predictions

based on overlap with the correct subset, is much better

suited for many multi-label tasks than strict subset-accuracy.

For example, in a medical note, a patient may present with

multiple illnesses or undergo a procedure with multiple

billing codes; predicting five out of six codes correctly is

a considerable help to medical billing systems. Multi-label

competitions organized by industrial companies, such as the

Yelp business categorization[5] and the Greek Media[6],

employ F-measure for evaluation. In this paper, we focus

on medium-to-large scale multi-label prediction problems

with up to hundreds of labels, such as medical billing codes,

movie genres, review objects, patent classification and news

categorization. These problems are of particular importance

in practice and research: 1) large and complex enough that

scalability and regularization need to be considered in the

algorithm design; 2) not so large as to prohibit interesting

algorithms due to computational requirements; 3) where

partially correct predictions are valuable.

We demonstrate how to regularize model complexity

during training, and how to regularize the label search space

during prediction. This separation allows any multi-label

algorithm to give optimal F-measure predictions, so long

as it outputs label-set joint probabilities. Specifically, we

regularize the classifier during training using the Elastic-net
(L1+L2) penalty in order to reduce model complexity.At

prediction time, we apply support inference to restrict the

label space to sets encountered in the training set, use Iso-
tonic Regression to produce calibrated marginal probabilities

and use the General F-measure Maximizer (GFM) to make

F1-optimal predictions, see Figure 1.

F-measure and Optimal F1 Predictions. The F-measure

is by far the most widely used metric for label/tag prediction

913

2018 17th IEEE International Conference on Machine Learning and Applications

978-1-5386-6805-4/18/$31.00 ©2018 IEEE
DOI 10.1109/ICMLA.2018.00148

Figure 1: Proposed Pipeline

because it assigns partial credit to “almost correct” answers

and handles label imbalance well. Let y be the ground truth

label vector, and let y′ be the predicted label vector. The

F1-measure for an instance is defined as

F (y,y′) =
2
∑L

l=1 yly
′
l∑L

l=1 yl +
∑L

l=1 y
′
l

(1)

which is the harmonic mean between precision and recall.

The reported “instance-F1” is the average of F1-measure

values over test instances.

Making an optimal prediction based on a trained model

to maximize the F1-measure cannot be done, in general,

by ranking all labels by their relevance and selecting the

top labels. It may seem surprising, in light of the existence

of many methods which make predictions by thresholding

marginal label probabilities. However, one can see why

making predictions based on label probabilities alone is

suboptimal: many metrics, including F1-measure, are not

decomposable over individual labels, and thus in general

require the classifier to take into account label dependencies

through joint label probability estimation. There exist a

few methods which explicitly take into account the F1-

measure during training [7], [8], [9], but the popular methods

that provide a joint estimation in the form of p(y|x) are

trained by standard maximum likelihood estimation with-

out considering the F1-measure as an objective. For such

methods, it is still possible to use an F1-optimal prediction

strategy post-training, that is, output y∗ which maximizes

the expected F1-measure:

y∗ = argmax
y′

∑

y

p(y|x) · F (y,y′) (2)

The General F-measure Maximizer (GFM) [10] is an

efficient algorithm that finds the F1-optimal prediction for

a given instance based on some probability estimations.

The GFM algorithm does not work directly with a joint

estimation p(y|x), but rather, some L2 marginal distributions

(defined more precisely in Section III-B). The paper [10]

proposed two ways of obtaining these L2 marginals (or prob-

abilities per instance): 1) a model which directly estimates

L2 marginals from data, and 2) the use of a probabilistic joint

estimator p(y|x) and sampling to generate the required L2

probabilities. We find that option 1) is very difficult, perhaps

unsolvable, although it is indeed appealing as a theoretical

exercise. We instead develop an efficient solution based on

2) with a critical change: after training the joint estimator

p(y|x), we derive the required L2 marginals using support

inference and Calibration. These marginals are then fed

into GFM to produce the F1-optimal prediction (Figure 1).

II. MULTI-LABEL CLASSIFIERS

For each multi-label classifier considered, we describe its

probabilistic formulation p(y|x) and its standard argmax

prediction method, which gives argmaxy p(y|x). It is worth

noting that the argmax prediction, although very common,

only provides the optimal prediction for the exact-set accu-

racy measure, but not for the F1-measure [10], [11].

Binary Relevance (BR) [1] assumes that all labels are

independent and thus the joint over all labels is a product of

marginals, see (3). This independence assumption simplifies

both training and prediction: L binary classifiers (logistic

regressions) are trained, one for each label; the argmax

prediction simply predicts each label independently.

p(y|x) =
L∏

l=1

p(yl|x) (3)

Probabilistic Classifier Chain (PCC) [2] decomposes

the joint density estimator into a product of conditionals

using the chain rule, in (4). During training, one logistic

regression is trained for each label based on both features

and all previous labels; it models label dependency, but

the pre-set order of labels in the decomposition is critical.

The exact argmax prediction is generally intractable. Beam

search is often used as an approximate argmax prediction

procedure [12], which is applied in our experiments.

p(y|x) = p(y1|x)p(y2|x, y1) · · · p(yL|x, y1, .., yL−1) (4)

Pair-wise Conditional Random Field (CRF) [3] defines
a log-linear model with potential functions for feature-label
pairs and label-label pairs.

p(y|x) = 1

Z(x)
exp{

L∑

l=1

D∑

d=1

wldxd [yl = 1]

+
L∑

l=1

L∑

m=1

(wlm1 [yl = 0, ym = 0] + wlm2 [yl = 0, ym = 1]

+wlm3 [yl = 1, ym = 0] + wlm4 [yl = 1, ym = 1])} (5)

where Z(x) is the normalization constant, and all w are

estimated weights. All weights are trained jointly using

maximum likelihood estimation. Both computing the par-

tition function Z(x) and the exact argmax predictions are

intractable, as an exponential number of label combinations

are involved. [3] suggests using support inference to solve

the intractability issues: the idea is to restrict y values

only to label combinations observed in the training set

when computing scores and probabilities. While the authors

propose support inference only as an approximation, we

think it is actually the main reason CRF works well: support

inference adds strong regularization and dependency effects.

Conditional Bernoulli Mixtures (CBM) [4] represents

the joint as a mixture of K components, each with in-

dependent label classifiers, shown in (6). The multi-class

914

classifier (a multi-nomial logistic regression) π decides the

mixing coefficient for each mixture component. Inside each

component, the joint is factorized into marginals, estimated

by L binary classifiers b (binary logistic regressions). Both

the multi-class classifier and the binary classifiers are trained

jointly by EM algorithm. The exact argmax can be computed

efficiently using dynamic programming.

p(y|x) =
K∑

k=1

π(z = k|x)
L∏

l=1

b(yl|x, z = k) (6)

III. TRAINING AND PREDICTION FOR OPTIMAL F

We propose a classifier training and prediction pipeline

which works with all the existing multi-label classifiers de-

scribed above. It adds careful regularization to the classifier

training and employs a new prediction strategy. With these

enhancements, most multi-label classifiers studied here are

able to outperform recent other methods (see Table V).

A. Training Regularization

L1 Regularization. L2 regularization is the most com-

monly used regularization techniques for text classifiers.

However, because the number of model parameters (for the

classifiers described above) grows at least linearly with the

number of labels and the number of bag-of-words/ngrams

features, and both of which are large on multi-label text

data, using only L2 regularization leads to a large number

of model parameters and hence over-fitting.

One remedy for the high dimensionality is to apply the

L1 regularization to perform feature selection by shrinking

some irrelevant feature weights to zero. However, L1 alone

can often pick only one out of many highly correlated

features, possibly hurting the generalization — so L2 is still

necessary for spreading weights across correlated features.

In our pipeline we regularize all model training (except CRF,

which is difficult) with the elastic-net regularization [13],

which combines both L1 and L2 regularization, in the form

λ{α||w||1 + (1−α)||w||22}, to get the best of both worlds .

B. Prediction Strategy

At prediction time, the task is to find the Bayes optimal

prediction y∗ that gives the highest expected F1-measure by

formula (2) under the predictive distribution p(y|x).
GFM: optimal prediction for F1-measure. The General

F-Measure Maximizer (GFM) algorithm [10] is an exact

and efficient algorithm for computing y∗ in Θ(LT 2) time,

where T is the average number of labels per instance.

However, the GFM algorithm does not work directly with a

joint estimation p(y|x) provided by standard classifiers, but

rather, some marginal distributions of the form

p(yl = 1, |y| = s | x), ∀l, s ∈ {1, ..., L} (7)

where |y| stands for the number of relevant labels in y.

This formula can be read as, for example, “the probability

Table I: Datasets Characteristics

BIBTEX IMDB OHSUMED RCV1 WISE WIPO
domain bkmark genre medical news articles patent
source Mulan crawled* MEKA* Mulan WISE2014 HRSVM
labels 159 27 23 101 203 188

label sets 2,058 2,122 1,042 494 3,536 155
features 1,836 27,228 16,344 47,236 301,561 74,435
instances 7,395 34,157 13,929 6,000 64,857 1,710

cardinality 2.40 2.52 1.66 3.23 1.45 4.00
inst/label 112 2537 1007 188 463 36

Note: cardinality = average number of labels per instance; inst/label = the average
number of training instances per label. Except for IMDB, all datasets are publicly
available. “*”= we processed the source documents and recomputed all-unigram
feature values, because the published feature matrix did not include all unigrams and
the pre-processing was unclear.

of the given document having s = 5 relevant labels and

yl =election is one of them”. Obviously, there are (no

more than) L2 probabilities in this form, per instance.

Support Inference. [10] proposes to sample from the

joint p(y|x) and then compute the GFM input probabilities

based on the samples. However sampling is ineffective for

large L and low-confidence (”flat”) joint density that spreads

probability mass over many label sets. Our proposed way of

producing the GFM L2 input probabilities from the joint

p(y|x) is through support inference, which only considers

those label combinations y in the training set and marginal-

izes over their probabilities. This is more efficient than

sampling, and also provides some additional regularization

effect on the label structures, as demonstrated later.

At first glance, support inference seems to have the

limitation of not considering unseen label combinations. In

reality this limitation only appears during marginalization,

and is largely mitigated by GFM in the prediction step. It

is not hard to show that although support inference only

considers existing combinations, support inference + GFM

can output unseen combinations. Thus support inference

provides a regularized probability estimation by only assign-

ing probability mass to observed combinations, and GFM

takes this regularized probability estimation as the input and

outputs F optimal prediction, which could potentially be an

unobserved label combination. We observe this strategy to

work remarkably well for many classifiers and datasets.

Calibration. It is often the case that the probability esti-

mations given by the classifiers are uncalibrated, meaning

that the probabilities do not align well with the actual predic-

tion accuracy. One can further calibrate these probabilities

on a validation set using some calibration method such as

Isotonic Regression [14]. We find that calibrating the L2

marginal probabilities produced by support inference helps

GFM make better predictions. Putting together, our proposed

overall prediction strategy is to first run support inference

to compute p(y|x) for each y in the training set, and

then marginalize over them to get the required L2 marginal

probabilities, and then run Isotonic Regression to calibrate

these probabilities, and finally run GFM on the calibrated

L2 probabilities to make a prediction.

915

Table II: F-measure on test w/ and w/o L1(L), Support

Inference(S), GFM(G) and Calibration(C)

Data Model Standard SG L LS LG LSG LSCG

B
IB

T

BR 37.8 44.5 39.8 44.4 40.2 45.4 48.1
CRF\ L1 - - - 46.5 - 49.4 49.5

PCC 37.4 45.3 39.5 45.0 40.1 47.3 48.2
CBM 44.0 45.9 45.3 46.9 40.4 49.5 50.4*

IM
D

B

BR 59.4 61.8 59.6 59.7 61.0 61.4 63.8
CRF\ L1 - - - 63.0 - 66.6 67.1*

PCC 59.6 63.9 60.1 60.2 61.5 62.8 64.4
CBM 61.6 65.1 62.2 62.2 64.8 65.2 66.2

O
H

S
U

BR 60.2 67.9 63.6 68.0 64.3 69.1 71.0
CRF\ L1 - - - 66.4 - 69.6 70.5

PCC 62.5 70.1 64.7 68.4 65.8 70.4 72.1
CBM 68.7 70.3 69.5 70.3 65.4 71.7 72.6*

R
C

V
1

BR 72.1 73.7 73.8 74.6 74.9 75.1 76.1
CRF\ L1 - - - 74.4 - 75.8 76.1

PCC 71.0 73.6 72.7 72.8 74.3 74.1 74.4
CBM 76.6 77.3 77.3 78.5 77.9 79.2* 78.7

W
IS

E

BR 68.0 77.3 72.8 79.0 73.0 79.3 80.1
CRF\ L1 - - - 77.7 - 79.0 79.4

PCC 70.7 76.0 74.6 76.7 77.1 78.0 -
CBM 77.9 78.6 79.8 79.8 73.6 80.3 81.5*

W
IP

O

BR 63.4 71.2 69.5 73.2 70.0 74.0 68.0
CRF\ L1 - - - 70.3 - 72.2 72.5

PCC 68.8 71.5 70.2 70.4 70.6 72.3 54.6
CBM 63.0 70.8 69.6 72.5 70.3 74.3* 71.3

Note:bold: best in row; *: best in dataset; “-”: N/A (CRF requires S); “CRF\L1”:
CRF w/o L1.

IV. EXPERIMENTAL RESULTS & ANALYSIS

Datasets and Experiment Setup. The multi-label text

datasets used in experiments are shown in Table 1. We adopt

the given train/test split whenever it is provided; otherwise

we use a random 20% of the data as the test set. Hyper pa-

rameter tuning for all algorithms is done by cross validation

on the training set and F1-measure on the test set is reported.

For methods involving random initializations or sampling,

reported results are averaged over 3 runs. When applying L1

regularization, we use L1 penalty together with the basic L2

penalty in the elastic-net form λ{α||w||1+(1−α)||w||22}, and

we tune the overall strength λ and the L1 ratio α. When L1

penalty is not included, we only keep L2 penalty by setting

α = 0 and we only tune λ.

A. Analysis: L1 Regularization

First we analyze the regularization effects of L1 penalty

during training. The experiment results are summarized in

Table II. The letters “L, S, G” stand for “L1”, “support

inference” and “GFM”, respectively. Each column uses a

different subset of these techniques. The “Standard” column

does not use any of these. It follows the convention that uses

only L2 penalty to regularize logistic regression learners,

trains each model until full convergence, and performs

argmax prediction during prediction. This column serves as

a baseline. Comparing the column “LSG” with the column

“SG”, we can see that overall introducing some L1 penalty

improves performance on 5 out of 6 datasets—BIBTEX,

OHSUMED, RCV1, WISE, WIPO, but not IMDB. Also the

difference L1 makes is a function mainly of the dataset, and

less of the classifier (CRF is excluded due to the absence of

L1).

Table III: Model size and feature used

Data

BR CBM
L2 L1L2 L1L2 L2 L1L2 L1L2

model feature model model feature model
size(MB) used size size(MB) used size

BIBT 7 100% 26% 135 100% 4%
IMDB 20 66% 21% 355 99% 10%
OHSU 10 53% 34% 177 68% 6%
RCV1 48 70% 12% 910 77% 2%
WISE 1.4(G) 14% 1% 13(G) 24% <1%
WIPO 294 42% 2% 6G 77% 2%

Note: Percentages of the L2 model/feature size after adding L1 in BR and CBM.
Base L2 models use all features.

Each dataset has some intrinsic properties such as the

number of relevant documents per label, the diversity of the

topics, the total number of documents and the total number

of features, that dictate how many features have to be used in

order to explain the given labels/topics well and how many

model parameters can be reliably estimated based on the

given dataset size, and these factors in turn influence how

much improvement L1 feature selection can bring in.

Apart from improving test F1 performance, L1 also

shrinks the model sizes massively. The model size is mea-

sured by the disk space the model occupies. Table III com-

pares the sizes of models trained with only L2 versus models

trained with both L1 and L2 penalty. Generally, adding L1

shrinks models to no more than 10% of its original sizes for

CBM. On some datasets, such as RCV1, WISE and WIPO,

the shrunk CBM models are only about 1%. Interesting,

if we look at the total number of features selected by the

classifiers, the reduction in feature size is not as dramatic

as the reduction in model size. This is in direct contrast

with binary classification, where these two reductions mostly

agree. By looking into the trained multi-label classifiers, we

notice that although many features are relevant for some

labels and are thus included in the classifiers, for each

individual label, only a few features actually have non-zero

weights. Thus, although the union of relevant features for

all labels can be large, each label predictor can be a small

model that includes a few features, and the entire multi-label

classifier is therefore quite compact.

B. Analysis: GFM, Support Inference, Calibration

We now analyze the effect of each step in the proposed

prediction strategy. Experiment results are summarized in

Table II. The new letter “C” stands for “Calibration”, and all

others stay the same. The “L” column uses argmax prediction

as described in Section II. Comparing the “L” column with

the “LSCG” column, it is clear that the proposed prediction

strategy performs better than argmax prediction in terms

of F1 for almost all methods on all datasets. Furthermore,

the effect of calibration can be observed by comparing the

“LSCG” column with the “LSG” column. Adding calibration

consistently boosts the performance by 1 percent on all

datasets except WIPO.

The “LG” column only uses GFM predictor but not

916

Table IV: F-measure on CRF w/ and w/o label-label pair.

BIBT IMDB OHSU RCV1 WISE WIPO
pairwise w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

CRF w/o GFM 46.9 46.5 61.3 63.0 66.1 66.4 73.8 74.4 78.2 77.7 70.7 70.3
CRF w/ GFM 49.4 49.4 66.1 66.6 69.8 69.6 75.8 75.8 79.4 79.0 71.8 72.2

support inference. For each method, we sample 1000 times

based on the estimated joint and use samples to compute

the marginals probabilities required by the GFM predictor,

as described in Section III-B (The CRF numbers are missing

as there is no straight forward way of sampling from CRF).

Comparing “LG” with column “L”, we see that GFM alone

gives some improvement for BR and PCC, but is less

effective for CBM. However, CBM clearly benefits from

GFM in conjunction with support inference.

The “LS” column only uses support inference but not

GFM prediction. We use support inference to restrict the

label combinations to those observed in the training set, and

among them, we pick the one with the highest probability.

Comparing “L” with the “LS” column, we see that adding

the support inference alone consistently improves the test

performance (except for CRF, for which support inference

is always used, as described in Section II). The improvement

is most substantial on BR, which did not estimate any

label dependencies during training, and is relatively small on

CRF, PCC and CBM, which already estimated some label

dependencies during training. Thus support inference acts as

a regularizer on the label structure.

The Role of Support Inference It is known that if CRF as

described in Section II only contains label-feature interaction

but not label-pair interaction, and if the partition function is

computed exactly by summing overall all label combinations

(conceptually), then the resulting model is mathematically

equivalent to BR. In this case, theoretically there is no

need to compute the partition function approximately using

support combinations. So the authors in [3] only use support

inference when CRF contains label pair interactions and

thus the model does not factorize and one has to somehow

compute the partition function approximately. Support infer-

ence there was deemed purely as an approximate inference

procedure. But our results show, perhaps surprisingly, that

support inference in fact helps on BR – in other words, even

if we could compute the CRF partition function exactly, it

is still beneficial to compute it approximately, using support

inference. Table IV shows that CRF without label pair terms

does almost equally well as the one with label pair terms.

This demonstrates support inference as a simple yet powerful

regularizer, besides its original role as an approximation.

V. COMPARISONS WITH RELATED METHODS

Theoretically GFM can produce the Bayesian optimal

prediction given the L2 marginal probability inputs. It may

appear that if the end goal is to produce these L2 proba-

bilities as input to the GFM algorithm, it should be more

straightforward to estimate these L2 probabilities directly

rather than going through a joint estimation first, which by

itself is quite challenging (the joint evolves 2L probabilities

in general). In fact, it is conceptually not hard to derive an

algorithm (called Label Square Functions (LSF)) to estimate

the L2 marginals directly, as suggested in [10]. We can

estimate each p(yl = 1, |y| = s | x) using a binary logistic

regression. Another option is to estimate p(yl = 1|x) with a

binary logistic regression, and then p(|y| = s|x, yl = 1) with

another multinomial logistic regression and then multiply

their probabilities. However, in practice, Table V shows

that this direct estimation approach does not perform well:

directly predicting the number of relevant labels |y| by a

classifier is a very hard and unnatural task.

Besides the BR, PCC, CRF, CBM and LSF models with

logistic regression learners described so far, there also exist

other multi-label methods, some of which are quite effective

for certain metrics. However, once F1-measure is concerned,

most of these other methods lack an explicit probability

estimation, which is indispensable for GFM prediction. One

example is the BR model with linear SVM learners. We

take the widely used Liblinear package [15] for state-of-the-

art linear SVM and Logistic Regression implementations,

with carefully tuned hyper parameters, and notice that the

predictions from the package have much lower F1-measure

compared with our proposed BR + LSCG (see Table V).

The PD-Sparse method [16] is recently proposed for

extremely large scale multi-label classification. It employs

a Dual Fully-Corrective Block-Coordinate Frank-Wolfe al-

gorithm that exploits both primal and dual sparsity to achieve

high efficiency. However, PD-Sparse only computes a non-

probabilistic score for each label and ranks labels by scores.

It does not provide a straightforward way of predicting a

set of labels for each instance. The original implementation

provided by the authors ask the users to provide the desired

number of labels per instance and returns the top labels

with highest scores as predictions. Because the correct

number of labels varies greatly from instance to instance,

predicting a fixed number of labels for all instances results

in sometimes low precision (when the specified number of

labels is more than necessary), sometimes low recall (when

the specified number of labels is less than necessary), and

overall low F1-measure. Since PD-Sparse does not provide

probability estimations, GFM cannot be plugged in to predict

optimal F1. We tried to make the PD-Sparse predictions

more adaptive by tuning the threshold of the label scores

to maximize the F1-measure, but PD-Sparse still performs

much worse than our proposed methods (see Table V).

There are also several neural network based multi-label

classification methods [17], [18], [19], [20]. We run the code

associated with the recently proposed Structured Prediction

Energy Networks (SPEN) [17] with carefully tuned hyper

parameters as suggested by the authors and observe that

SPEN’s performance to be less competitive (see Table V),

possibly due to over-fitting in high dimensional data with

neural network’s high model capacity.

917

Table V: F-measure comparisons with other methods.

Method BIBT IMDB OHSU RCV1 WISE WIPO
BR SVM + L2 37.8 59.9 60.9 73.4 70.0 64.7
BR SVM + L1 39.3 59.0 63.5 73.0 70.0 68.1
BR LR + L2 38.1 60.0 61.1 72.3 68.6 64.3
BR LR + L1 39.0 60.5 61.4 73.4 70.4 68.7

LIFT 31.5 - 54.4 70.2 - 61.6
SPEN + L2 39.0 61.1 61.7 65.3 - 65.9

PDsparse+L1L2 40.7 62.3 67.3 75.0 74.5 67.5
CFT 23.5 - - 53.5 - 62.7

CLEMS 42.5 - 52.6 72.4 - 67.1
LSF 43.9 59.8 65.0 73.6 76.7 71.1

BR+LSCG† 48.1 63.8 71.0 76.1 80.1 68.0
CRF+LSCG† 49.5 67.1 70.5 76.1 79.4 72.5
CBM+LSCG† 50.4 66.2 72.6 78.7 81.5 71.3

Note: †: our method; ‘-’: indicates failed runs with 56 core and 256GB RAM.

The LIFT algorithm [21] constructs features specific to

each label by conducting clustering analysis on its positive

and negative instances, and then performs training and

testing by querying the clustering results. We run the code

provided by the authors and follow the suggested hyper

parameters and report the results in Table V. LIFT does

not perform well and could not finish on two datasets.

There are several approaches that seek to optimize the

F-measure directly during training. [9] provides an up-to-

date overview on different F-measure maximization meth-

ods. [22] uses a graph-cut algorithm and has poor scala-

bility on high dimensional text datasets. There are three

methods that use a cost-sensitive approach to optimize F-

measure score during training [23], [24], [7]. We tested the

Condensed Filter Tree method (CFT) [23] and the cost-

sensitive label embedding with multidimensional scaling

method (CLEMS) [24] and found both to perform poorly

and their training to be also slow (see Table V). [8] studies F-

measure maximization with conditionally independent label

subsets. This method has a strong assumption which makes

it hard to apply to real data.

VI. CONCLUSION

In this paper our main goal is to develop a pipeline in

order to reuse classic multi-label models to achieve high F1

scores on multi-label text data. We show that most multi-

label classification algorithms can be used in the pipeline as

long as they produce a joint estimator p(y|x). We show that

with careful training regularization and special prediction

strategy based on Support Inference, Calibration and GFM,

these classic methods can outperform recent sophisticated

methods (PDsparse, SPEN) and models (LSF, CFT, CLEMS)

designed specifically to be multi-label F-optimal.

REFERENCES

[1] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” Int J Data Warehousing and Mining, vol. 2007, pp. 1–
13, 2007.

[2] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” Machine learning, vol. 85, no. 3, pp.
333–359, 2011.

[3] N. Ghamrawi and A. McCallum, “Collective multi-label classifica-
tion,” in Proceedings of the 14th ACM international conference on
Information and knowledge management. ACM, 2005, pp. 195–200.

[4] C. Li, B. Wang, V. Pavlu, and J. A. Aslam, “Conditional bernoulli
mixtures for multi-label classification,” in ICML, 2016, pp. 2482–
2491.

[5] Yelp, “Automatically categorizing yelp businesses,” Sep 2015,
https://engineeringblog.yelp.com/amp/2015/09/automatically-
categorizing-yelp-businesses.html.

[6] WISE, “Greek media monitoring multilabel classification (wise
2014),” July 2014, www.kaggle.com/c/wise-2014.

[7] S. P. Parambath, N. Usunier, and Y. Grandvalet, “Optimizing f-
measures by cost-sensitive classification,” in Advances in Neural
Information Processing Systems, 2014, pp. 2123–2131.

[8] M. Gasse and A. Aussem, “F-measure maximization in multi-label
classification with conditionally independent label subsets,” in Joint
European Conference on Machine Learning and Knowledge Discov-
ery in Databases. Springer, 2016, pp. 619–631.

[9] I. Pillai, G. Fumera, and F. Roli, “Designing multi-label classifiers that
maximize f measures: State of the art,” Pattern Recognition, vol. 61,
pp. 394–404, 2017.

[10] W. Waegeman, K. Dembczyńki, A. Jachnik, W. Cheng, and
E. Hüllermeier, “On the bayes-optimality of f-measure maximizers,”
The Journal of Machine Learning Research, vol. 15, no. 1, pp. 3333–
3388, 2014.

[11] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “On
label dependence and loss minimization in multi-label classification,”
Machine Learning, vol. 88, no. 1-2, pp. 5–45, 2012.

[12] A. Kumar, S. Vembu, A. K. Menon, and C. Elkan, “Beam search
algorithms for multilabel learning,” Machine learning, vol. 92, no. 1,
pp. 65–89, 2013.

[13] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization paths
for generalized linear models via coordinate descent,” Journal of
statistical software, vol. 33, no. 1, p. 1, 2010.

[14] R. E. Barlow, “Statistical inference under order restrictions; the theory
and application of isotonic regression,” Tech. Rep., 1972.

[15] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “Li-
blinear: A library for large linear classification,” Journal of machine
learning research, vol. 9, no. Aug, pp. 1871–1874, 2008.

[16] I. E. Yen, X. Huang, K. Zhong, P. Ravikumar, and I. S. Dhillon, “Pd-
sparse: A primal and dual sparse approach to extreme multiclass and
multilabel classification,” in Proceedings of the 33nd International
Conference on Machine Learning, 2016, code: http://www.cs.utexas.
edu/∼xrhuang/PDSparse/.

[17] D. Belanger and A. McCallum, “Structured prediction energy net-
works,” in ICML, 2016.

[18] J. Nam, J. Kim, E. L. Mencı́a, I. Gurevych, and J. Fürnkranz, “Large-
scale multi-label text classification revisiting neural networks,” in
Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, 2014, pp. 437–452.

[19] M. Cissé, C. M. Al-Shedivat, and S. Bengio, “Adios: Architectures
deep in output space,” in ICML, 2016.

[20] V. Mnih, H. Larochelle, and G. E. Hinton, “Conditional restricted
boltzmann machines for structured output prediction,” arXiv preprint
arXiv:1202.3748, 2012.

[21] M.-L. Zhang and L. Wu, “Lift: Multi-label learning with label-
specific features,” IEEE transactions on pattern analysis and machine
intelligence, vol. 37, no. 1, pp. 107–120, 2015.

[22] J. Petterson and T. S. Caetano, “Submodular multi-label learning,” in
Advances in Neural Information Processing Systems, 2011, pp. 1512–
1520.

[23] C.-L. Li and H.-T. Lin, “Condensed filter tree for cost-sensitive multi-
label classification.” in ICML, 2014, pp. 423–431.

[24] K.-H. Huang and H.-T. Lin, “Cost-sensitive label embedding for
multi-label classification,” Machine Learning, vol. 106, no. 9-10, pp.
1725–1746, 2017.

918

