
Learning to Calibrate and Rerank

Multi-label Predictions

(Supplementary Material)

Cheng Li, Virgil Pavlu, Javed Aslam, Bingyu Wang, and Kechen Qin

Khoury College of Computer Sciences, Northeastern University, Boston, USA
{chengli, vip, jaa, rainicy}@ccs.neu.edu, qin.ke@husky.neu.edu

A BR-rerank vs. CBM in Calibration

In Table 4 of the main paper, we showed that BR-rerank and CBM have similar
classification performance. But BR-rerank has the advantage over CBM in
confidence calibration. Even though CBM is designed to directly estimate the
joint label probabilities [2], its estimations are often over-confident on new test
data. Figure 1 below compares BR, BR-rerank and CBM in terms of prediction
confidence calibration on the MSCOCO dataset. As we can see from the plots,
BR prediction scores are under-confident, BR-rerank prediction scores are well-
calibrated, and CBM prediction scores are over-confident.

0.0 0.2 0.4 0.6 0.8 1.0

BR score as confidence

0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
u
ra

c
y

0.0 0.2 0.4 0.6 0.8 1.0

Reranker score as confidence

0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
u
ra

c
y

0.0 0.2 0.4 0.6 0.8 1.0

CBM probability as confidence

0.0

0.2

0.4

0.6

0.8

1.0

a
c
c
u
ra

c
y

Figure 1: Comparison between BR, BR-rerank and CBM in terms of confidence
calibration on MSCOCO test dataset. Each dot represents a group of 100 set
predictions with similar confidence scores. The average confidence score in the
group is used as x-coordinate, and the average prediction accuracy is used as
y-coordinate.

1

B Illustration of BR-rerank Prediction Details

In Figure 2 of the main paper, we have given two example images from the
MSCOCO datasets on which BR-rerank corrects BR’s predictions. In Table
3 of the main paper, we have shown how BR-rerank scores and ranks predic-
tion candidates differently than the original BR. The detailed computation that
leads to the reranker scores were not provided in the main paper due to space
constraints. Here in Figure 2 below we provide the prediction computation de-
tails for the first example image, including the BR marginal probabilities and
the features extracted from the candidate sets.

p(person|x) = 0.99

p(baseball bat|x) = 0.99

p(baseball glove|x) = 0.37

p(handbag|x) = 0.03

p(sports ball|x) = 0.03

p(bench|x) = 0.01

p(bear|x) = 0.00

p(bottle|x) = 0.00

· · ·

person

baseball bat

person

baseball bat

baseball glove

person

baseball bat

handbag

person

baseball bat

sports ball

person

baseball bat

baseball glove

handbag

BR score=0.58

[1, 1, 0, 0, 0, · · ·]

card=2

prior=3× 10−3

BR score=0.35

[1, 1, 1, 0, 0, · · ·]

card=3

prior=5× 10−3

BR score=0.02

[1, 1, 0, 1, 0, · · ·]

card=3

prior=2× 10−5

BR score=0.02

[1, 1, 0, 0, 1, · · ·]

card=3

prior=1× 10−3

BR score=0.01

[1, 1, 1, 1, 0, · · ·]

card=4

prior=1× 10−5

BR reranker

reranker

reranker

reranker

reranker

0.16

0.17 3

0.04

0.08

0.03

input marginals
set

prediction
candidates

set
prediction
features

reranker
score

Figure 2: BR-rerank prediction details for the input test image. The “marginal”
column shows the individual label probabilities estimated by BR. Note that the
label baseball glove has a probability below the 0.5 threshold, and therefore
will not be included in BR’s predictions. The “set prediction candidates” column
shows the top-5 set prediction candidates with the highest BR scores generated
by dynamic programming based on BR marginals. The “set prediction features”
column shows, for each set candidate, its BR score, its binary encoding, its
cardinality and its prior probability. The “reranker score” column shows the
calibrated BR-rerank confidence score for each set prediction candidate. For this
image, BR predicts the incorrect set {person,baseball bat} with confidence
0.58. BR-rerank predicts the correct set {person, baseball bat, baseball

glove} with confidence 0.17.

2

C The Impact of Number of Candidates in Rerank-
ing

Figure 3 shows BR-rerank classification set accuracy as a function of number of
candidates K. When only the top-1 candidate is considered, BR-rerank is the
same as BR. Significant improvement can be achieve by simply considering and
reranking the top-10 candidates. Further increasing K does not give consistent
improvement and sometimes causes the performance to drop slightly.

0 10 20 30 40 50
0.16

0.17

0.18

0.19

0.20

0.21

0.22 bibtex

0 10 20 30 40 50
0.346

0.348

0.350

0.352

0.354

0.356

0.358

0.360

0.362 mscoco

0 10 20 30 40 50
0.36

0.37

0.38

0.39

0.40

0.41

0.42

0.43 ohsumed

0 10 20 30 40 50
0.44

0.46

0.48

0.50

0.52

0.54 rcv1

0 10 20 30 40 50
0.300

0.305

0.310

0.315

0.320

0.325

0.330

0.335 tmc

0 10 20 30 40 50
0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.60

0.61 wise

Figure 3: BR-rerank classification set accuracy as a function of the number
of candidates K obtained from BR. Each subfigure is for a different dataset.
X-axis is the number of candidates K, Y-axis is the set accuracy on test data.

3

D An Algorithm for Generating Top-K Set Pre-
diction Candidates from BR

The BR-rerank classifier reranks the top-K set prediction candidates generated
from BR. An efficient dynamic programming algorithm for generating the re-
quired candidates is described in [2]. It works as follows:

Algorithm 1 Generating the K-best prediction candidates from BR

1: Input: instance x and a BR classifier
2: Compute individual label probabilities based on BR: pl = p(yl = 1|x), l =

1, 2, ..., L
3: Initialize an empty priority queue Qk, and empty list C and an empty label

set ybest

4: for ` = 1, 2, ..., L do
5: if pl > 0.5 then
6: add l to ybest

7: end if
8: end for
9: Qk.enqueue(ybest)

10: while |C| < K do
11: y = Qk.dequeue()
12: add y to C
13: for ` = 1, 2, ..., L do
14: Generate y′ by flipping the `-th bit of y
15: if y′ has not been added to Q before then
16: Qk.enqueue(y′)
17: end if
18: end for
19: end while
20: Output: C

4

E Hyper Parameters Tuning in Experiments

• BR: elastic-net regularization penalty strength λ ∈ {0.0001, 0.000001}; L1
ratio ∈ {0.1, 0.5}; training iteration is decided by monitoring the validation
performance after each iteration.

• GB calibrator: shrinkage = 0.1; regression tree weak learner has 10 leaves;
the minimum number of instances per leaf is 5; training iteration is tuned
on validation set.

• BR-rerank: apart from setting the hyper parameters mentioned in GB
calibrator, we also set the number of candidates K = 10.

• 2BR and DBR: we use the validation data to decide whether the stage-2
model should take instance features x as par of the input; for the GB base
learner, we tune the number of training iterations using validation data;
we set shrinkage = 0.1; regression tree weak learner has 10 leaves; the
minimum number of instances per leaf is 5.

• Probabilistic Classifier Chains (PCC): following the common practice, la-
bels are arranged by decreasing frequency; for the GB base learner, we tune
the number of training iterations using validation data; we set shrinkage
= 0.1; regression tree weak learner has 10 leaves; the minimum number of
instances per leaf is 5; for prediction, we use beam search with width 5.

• Random k-label-sets (RAKEL): The number of labels used in each labelset
K ∈ {2, 4, 6, . . . , 30}.

• Multi-label k Nearest Neighbors (KNN): number of neighbors k ∈ {1, 3, 5, 7,
9, 11, 13, 15, 17, 19, 21}; the smoothing parameter s ∈ {0.5, 0.7, 1.0}.

• Deep Value Network (DVN): whether or not to includes a linear layer after
the two-layer perceptron.

• Predict and Constrain (PC): number of hidden units for the linear part
h ∈ {100, 150, 200}.

• PD-Sparse (PDS): L1 regularization weight, λ ∈ {1, 0.1, 0.01, 0.001, 0.0001};
in order to predict a subset of labels as opposed to simply ranking labels,
we tune the score threshold.

• SPEN: we use the hidden layer sizes mentioned in the original paper.

5

F Experiments with Monotonicity and Another
GB Variant

We conducted additional experiments on imposing partial monotonicity in GB.
Since the GB score is the sum of regression tree scores, it suffices to impose
monotonicity constraints in each tree. We follow the method implemented in
the xgboost package [1] which works as follows: We associate a lower bound
and an upper bound with each tree node (including intermediate nodes). As
the tree grows, each node first inherits its parent’s bounds and then tightens
the bounds as new constraints are introduced. A leaf always outputs a value
within its bounds. When a node is split into two children by a monotonic
feature, assuming data with smaller feature value goes left, we compute the
middle point between the output of the left child and the output of the right
child (they are treated as leaves), and set the upper bound of the left child and
the lower bound of the right child to be this middle point. When a node is
split with a non-monotonic feature, its children just inherit its bounds without
further tightening.

We also tested anther variant of GB, named GB-KL, which has a sigmoid
transformation on top of the ensemble score and is trained by minimizing KL
divergence. We compare it with GB-MSE, which does not employ the sigmoid
transformation and is trained by minimizing square error.

We tested all 4 configurations of calibrator and monotonicity and the results
are shown in Tables 1,2,3,4. All 4 configurations have similar calibration and
prediction performance.

6

calibrator monotonicity BIBTEX OHSUMED RCV1 TMC WISE MSCOCO
GB-MSE no 0.0682 0.1889 0.1229 0.1800 0.1472 0.1434
GB-MSE yes 0.0653 0.1854 0.1227 0.1783 0.1468 0.1438
GB-KL no 0.0696 0.1904 0.1260 0.1794 0.1476 0.1437
GB-KL yes 0.0666 0.1850 0.1253 0.1772 0.1467 0.1436

Table 1: BR prediction calibration performance in terms of MSE (the smaller
the better).

calibrator monotonicity BIBTEX OHSUMED RCV1 TMC WISE MSCOCO
GB-MSE no 0.0719 0.0467 0.1262 0.0319 0.1022 0.0825
GB-MSE yes 0.0783 0.0475 0.1366 0.0347 0.1029 0.0823
GB-KL no 0.0753 0.0475 0.1236 0.0330 0.1014 0.0824
GB-KL yes 0.0782 0.0496 0.1299 0.0351 0.1028 0.0824

Table 2: BR prediction calibration performance in terms of sharpness (the bigger
the better).

calibrator monotonicity BIBTEX OHSUMED RCV1 TMC WISE MSCOCO
GB-MSE no 21.5 42.0 53.2 33.3 60.5 35.9
GB-MSE yes 22.1 41.9 52.7 32.9 60.4 36.0
GB-KL no 21.1 41.1 51.8 33.0 60.3 36.2
GB-KL yes 22.1 41.4 52.2 33.1 60.5 36.1

Table 3: Prediction performance of BR-rerank in terms of set accuracy.

calibrator monotonicity BIBTEX OHSUMED RCV1 TMC WISE MSCOCO
GB-MSE no 42.2 67.5 78.8 66.8 75.4 73.2
GB-MSE yes 43.1 67.2 78.6 66.6 75.5 73.4
GB-KL no 41.8 66.8 78.2 66.4 75.1 73.3
GB-KL yes 42.4 67.1 78.2 66.5 75.3 73.3

Table 4: Prediction performance of BR-rerank in terms of instance F1.

7

G Implementations Used in Experiments

Table 5 shows the code we ran in our experiments.

Method Implementation
BR, BR-rerank, 2BR, DBR,

ours: https://github.com/cheng-li/pyramid
PCC, CRF, CBM

RAKEL, KNN https://github.com/scikit-multilearn/scikit-multilearn

DVN https://github.com/gyglim/dvn

PC https://github.com/Natalybr/predict_and_constrain

PDS http://www.cs.utexas.edu/~xrhuang/PDSparse/

SPEN https://github.com/davidBelanger/SPEN

Table 5: Implementations used in our experiments.

8

References

[1] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794. ACM, 2016.

[2] Cheng Li, Bingyu Wang, Virgil Pavlu, and Javed A. Aslam. Conditional
bernoulli mixtures for multi-label classification. In Proceedings of the 33rd
International Conference on Machine Learning, pages 2482–2491, 2016.

9

