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Multi-label Classification: example

Flickr Image Tagging

airport
animal
clouds
book
lake
sunset
sky
cars
water

NEORREO-OO

reflection
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Multi-label Classification: example

Reuters News Article Categorization

' Internet
Breakingviews |:| .
: [ . crime
Twitter may score big with football
digital rights M NFL
By Jennifer Saba | April 5,2016 |:| government
(v O Asia
INTERNET | NFL | SPORTS | SPORTS BUSINESS @ M +
The alithoris-a~-Reul inguis ™“The opinions are her own. Spor S
Twitter may finally be gaining some ground. Chief Executive Jack Dorsey’s social-media |:| pO l 1 t 1CsS
company has won the rights to stream National Football League games on 10 Thursday M .
nights for roughly $10 million, according to technology site Re/code. That's about the price of Sport S bus iness
a one-minute Super Bowl commercial. After fumbling with stalled growth in the number of s
P o o M Twitter

users, Twitter may have found a cheap way to stay on the field with rivals like Facebook.
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Multi-label Classification: many applications

Reuters
news cate-
gorization

Flickr image
tagging

IMDB
Multi-label movie

Classification genre clas-
sification

ICD/CPT
medical
billing

Youtube
video
tagging

Patent clas-
sification

Aslam, B. Wang, and K. Qin Learning to Calibrate and Rerank Multi-label Predictions



Multi-label Classification: mathematical formulation

length L

x 5 Y =[Y1, Y, ..., Y] = [1,0,0,1,0, ..., 1]

L: # candidate labels

x: instance features

h: multi-label classifier (to be built)

Y: label subset, written as binary vector of length L

v, = 1 label ¢ applies =121
0 label ¢ does not apply
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Binary vs Multi-class vs Multi-label

» binary classification: 1 out of 2
» multi-class classification: 1 out of many

» multi-label classification: many out of many
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Binary Relevance (BR) Method

» train one binary classifier p(Yy|x) for each label ¢

» predict each label independently: predict label £ if
p(Ye =1]x) > 0.5

» prediction confidence
p(Y[x) = p(Y1]x) x p(Yalx) x -+ x p(Yi|x)

Pros and Cons

© faster than many other methods

© easy to implement

® make mistakes due to ignoring label dependencies

® does not provide calibrated confidence
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New Multi-label Method: BR-rerank

capture label dependencies
maintain the simplicity of BR

rerank BR’s predictions to improve its accuracy

vvyyy

post-calibrate BR's confidence scores
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BR's drawback: ignoring label dependencies

® Make invalid predictions that violate label constraints:
cat = animal

V' cat

[] animal

0 person

L0 building
O car
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BR's drawback: ignoring label dependencies

® May not handle difficult labels well.
> clouds,lake,sunset,sky,water: easy to predict directly

> reflection: hard to predict directly

airport
animal
clouds
book

lake
sunset

sky

cars

water
reflection

DROKER-ROR-ODO
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BR's drawback: ignoring label dependencies

Better solution:
© Let easy labels help difficult labels

> clouds,lake,sunset,sky,water: easy to predict directly

» reflection: often co-occurs with water and lake

airport
animal
clouds
book
lake
sunset
sky
cars

water
reflection

NEORREO-OO

C. Li, V. Pavlu, J. Aslam, B. Wang, and K. Qin Learning to Calibrate and Rerank Multi-label Predictions



BR-rerank: rerank BR's predictions

» ground truth: {person, baseball bat, baseball glove}
» BR predicts: {person, baseball bat}
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BR-rerank: two stage prediction

input
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BR-rerank: two stage prediction

input
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BR-rerank: two stage prediction

input marginals

p(person|x) = 0.99
p(baseball bat|x) = 0.99
p(baseball glove|x) = 0.37
p(handbag|x) = 0.03
p(sports ball|x) = 0.03
p(bench|x) = 0.01
p(bear|x) = 0.00
p(bottle|x) = 0.00
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BR-rerank: two stage prediction

input marginals

p(person|x) = 0.99
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BR-rerank: two stage prediction

input marginals

p(person|x) = 0.99
p(baseball bat|x) = 0.99
p(baseball glove|x) = 0.37
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BR-rerank:

input

two stage prediction

marginals

p(person|x) = 0.99
p(baseball bat|x) = 0.99
p(baseball glove|x) = 0.37
p(handbag|x) = 0.03
p(sports ball|x) = 0.03
p(bench|x) = 0.01
p(bear|x) = 0.00
p(bottle|x) = 0.00
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BR-rerank: two stage prediction

input marginals
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BR-rerank: two stage training

training data
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BR-rerank: two stage training

training data

subset |

subset Il

C. Li, V. Pavlu, J. Aslam, B. Wang, and K. Qin Learning to Calibrate and Rerank Multi-label Predictions



BR-rerank: two stage training

training data

train
subset | —— ' ¥BR)

subset Il
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BR-rerank: two stage training

training data

train

subset | @

apply

subset Il

BR prediction candidates
on subset Il
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BR-rerank: two stage training

training data

train

subset | @

apply

subset Il

BR prediction candidates
on subset Il
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BR-rerank: two stage training

set
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How is BR-rerank Different from other Stacking Methods?

\
Q '0/
S

SN
'I‘b(‘)“\

Stage 2 predictions:
» Other stacking methods: decide each label separately
» BR-rerank: finds the label set with the highest score
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BR-rerank: classification accuracy

Table: set accuracy on test data

Dataset BR | BR-rerank | 2BR | DBR | CBM | CRF | SPEN | PDS | DVN | PC | PCC | Rakel | MLKNN
BIBTEX 16.6 21.5 16.1 | 20.2 | 229 | 23.3 | 148 | 16.1 | 16.2 | 20.3 | 21.4 | 18.3 8.4
OHSUMED | 36.6 42.0 375|376 | 405 | 40.4 | 29.1 | 348 | 186 |29.5| 38.0 | 39.3 25.4
RCV1 445 53.2 423 | 458 | 55.3 | 53.8 | 27.5 | 40.8 | 13.7 | 39.7 | 48.7 | 46.0 46.2
T™MC 30.4 333 321|317 | 308 | 282 | 26.7 | 234 | 203 |23.0 | 31.3 | 27.6 189
WISE 52.9 60.5 51.8 | 55.8 | 61.0 | 46.4 - 52.4 | 28.3 - 559 | 3.5 24
MSCOCO 34.7 35.9 337|320 | 31.1 | 351 | 341 | 25.0| 29.9 |31.1| 321 | 326 29.1
ranking 6.3 1.8 6.7 | 57 3.3 3.8 100 | 98 | 112 | 10.0 | 45 6.8 11.0

» BR-rerank performs much better than BR
» BR-rerank has the highest average ranking
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BR-rerank: training time

Table: Training time of different methods, measured in seconds.

Dataset | BIBT | OHSUM | RCV1 | TMC | WISE | MSCO
BR 4 3 7 8 80 1380
BR-rerank 9 6 10 11 88 1393
CBM 64 210 70 224 | 1320 8520
CRF 353 268 | 1223 771 | 16363 | 14760

» Reranking step does not add much overhead.
» BR-rerank is much faster than competitors CRF and CBM.
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BR-rerank: calibrated confidence

Major benefit of BR-rerank: calibrated confidence, essential in
real applications, but often overlooked in academia.

Example: using calibrated confidence to filter predictions to
maintain target accuracy 0.9

accept the prediction

if confidepce > 0.9

classifier

prediction Y

if confidense < 0.9

verify the prediction
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BR-rerank: calibrated confidence

© calibrated confidence: score aligns with accuracy
e.g., among all predictions with prediction score=0.7, 70% are
actually correct (accuracy=70%)

® uncalibrated confidence: score does not align with accuracy
e.g., among all predictions with prediction score=0.7, 50% are
actually correct (over-confident)
90% are actually correct (under-confident)
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BR-rerank: calibrated confidence

00 02 04 06 08 10 0.0 0.2 04 06 0.8 10 0.0 02 04 06 08 1.0
BR score as confidence CBM probability as confidence Reranker score as confidence

» 3 models tested on MSCOCO test set
» each dot represents 100 predictions with similar confidence
» x-value=confidence, y-value=accuracy

» BR-rerank and CBM have similar overall classification
accuracy. But CBM probabilities are over-confident,
BR-rerank scores are well calibrated
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Reranker vs other post-calibrators

» Prediction: BR predictions on WISE test set
> Calibrators: none vs trivial vs isotonic regression vs reranker
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(C) isotonic regression (d) reranker calibrator
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Evaluation metrics for calibration

e ¢(Y) € [0, 1] confidence score

e v(Y) € {0,1} 0/1 correctness

e e(c) = p[v(Y) = 1]c(Y) = ] is the average set accuracy among all
predictions whose confidence is c.

o Alignment error: E[e(c(Y)) — c(Y)]?; the discrepancy between the
claimed confidence and the actual accuracy. The smaller the better.

e Sharpness:Var[e(c(Y))]; how widely spread the confidence scores are.
The bigger the better.

e The mean squared error (MSE, also called Brier Score):

E[(v(Y) — ¢(Y))?]; the difference between the confidence and the actual
0/1 correctness.

E[(v(Y) — c(Y))*] =El(e(c(Y)) — c(¥))?] - Var[e(c(Y))] + Var[v(Y)]
——

MSE alignment error sharpness uncertainty
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BR-rerank: calibrated confidence

How does reranker achieve calibration?
» 0/1 correctness as target and MSE as objective
> output average of targets (=accuracy=calibrated confidence)
P split data: reranker evaluates BR predictions objectively

» use more informative features to increase sharpness
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GB vs other Post Calibrators

Table: BR prediction calibration performance in terms of MSE (the
smaller the better) and sharpness (the bigger the better).

Dataset uncentainty uncalib isotonic card isotonic tree reranker
MSE | sharp | MSE | sharp | MSE | sharp | MSE | sharp | MSE | sharp
BIBTEX 0.133 0.193 | 0.007 | 0.140 | 0.002 | 0.109 | 0.038 | 0.086 | 0.065 | 0.068 | 0.072
OHSUMED 0.232 0.226 | 0.015 | 0.221 | 0.013 | 0.182 | 0.051 | 0.211 | 0.039 | 0.189 | 0.047
RCV1 0.247 0.175 | 0.077 | 0.175 | 0.075 | 0.159 | 0.093 | 0.134 | 0.129 | 0.123 | 0.126
T™MC 0.212 0.192 | 0.019 | 0.192 | 0.020 | 0.192 | 0.022 | 0.194 | 0.029 | 0.180 | 0.032
WISE 0.249 0.252 | 0.017 | 0.234 | 0.017 | 0.151 | 0.098 | 0.166 | 0.093 | 0.147 | 0.102
MSCOCO 0.227 0.158 | 0.075 | 0.151 | 0.075 | 0.150 | 0.076 | 0.163 | 0.070 | 0.143 | 0.083
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Supplementary

CBM, BR-rerank vs deep learning (page 38)
BR-rerank vs DVN (page 39)

BR-rerank vs GAN (page 40)

BR-rerank vs CRF (page 41)

Time complexity (page 42)

Top-K for BR (page 44)

Features for Calibration (page 37)

Metrics for Calibration (page 33)
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Why does considering more features help calibration?
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CBM, BR-rerank vs Deep Learning

» CNN: a feature extractor, can be used in CBM and BR-rerank
as base learners for image data

> RNN: original designed for sequence prediction, not for sets,
requires a label order in training. We have done work in
adapting RNN to set prediction by make RNN training
invariant to label orders. Joint work with Kechen Qin.
Published at NAACL 2019.

» CBM and BR-rerank: designed for set prediction from the
beginning, and do not require label orders.
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BR-rerank vs Deep Value Network

» DVN: trains a neural network to evaluate prediction candidates
and then uses back-propagation to find the prediction that
leads to the maximum score. Only use the binary encoding of
the label set. Its gradient based inference makes it very
difficult to directly incorporate higher level features extracted
from the label set, such as cardinality and prior set probability.

» BR-rerank: could use any feature: binary encoding, BR score,
prior, cardinality
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BR-rerank vs GAN

» GAN: Also has two models, one for generating samples and
one for judging these samples. Unsupervised training, used for
generating new samples. Two models trained simultaneously,

» BR-rerank: supervised, used for classification. Two models
trained in separate stages.
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BR-rerank vs CRF

» CRF: needs to pre-allocate parameters; only model pair-wise
interactions; higher-order interaction requires too many
parameters. Normalization is intractable; support inference
eliminates unseen combinations. There is another CRF that
only works for given exclusive or hierarchical label relations.

» BR-rerank: no need to pre-allocate parameters; GB
automatically models interactions on the fly using binary
labels as features; models higher interactions;
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Time Complexity

» reduction methods; depends on the base learner
> dense CBM: K x Lx binary classifier complexity

» sparse CBM: skip certain label classifiers in each component;
sub-linear in K

» BR-rerank: stage 1 BR training dominates

Table: Training time of different methods, measured in seconds. All
algorithms run multi-threaded on a server with 56 cores.

Dataset | BIBT | OHSUM | RCV1 | TMC | WISE | MSCO
BR 4 3 7 8 80 1380
BR-rerank 9 6 10 11 38 1393
CBM 64 210 70 224 | 1320 8520
CRF 353 268 | 1223 771 | 16363 | 14760
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Time Complexity

Table: The training time and prediction time of different methods on five
datasets. All numbers are in seconds.

dataset SCENE RCV1 TMC2007 MEDIAMILL NUS-WIDE
Method Learner | Train Predict | Train  Predict | Train  Predict | Train Predict | Train  Predict
BinRel LR 2 <1 19 <1 26 <1 136 <1 128 1
PowSet LR 35 <1 3147 <1 38037 1 85794 1 521760 34
ccC LR 3 <1 509 <1 332 <1 1949 1 2520 2
PCC LR 3 <1 509 3 332 1 1949 4 2520 27
ECC-label LR 22 <1 4915 27 3404 15 19642 38 25791 246
ECC-subset LR 22 <1 4915 26 3404 18 19642 39 25791 287
CDN LR 4 45 18417 213433 | 54253 596228 | 3126 6572 | 17941 41789
pairCRF linear 11 <1 2136 <1 215 <1 2990 <1 48404 7
(dense) CBM LR 70 <1 4412 4 1495 1 17608 13 35363 48
(sparse) CBM LR 24 <1 182 <1 393 <1 8862 5 15561 14
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Generating the K-best prediction candidates from BR

Algorithm 1 Generating the K-best prediction candidates from BR

1: Input: instance x and a BR classifier

2: Compute individual label probabilities based on BR: p; = p(y; =
1x),/=1,2,...,L

3: Initialize an empty priority queue Q¥, and empty list C and an
empty label set ypest

4: for ¢ =1,2,...,L do

5 if p; > 0.5 then

6 add / to Ypest

7. endif

8: end for

9: Qk~e"queue(Ybest)

10: while |C| < K do

11:  y = Q*.dequeue()

122 addyto C

132 for(=1,2,...,L do

14: Generate y’ by flipping the (-th bit of y
15: if y’' has not been added to Q before then
16: Q¥.enqueue(y’)

17: end if

18:  end for
19: end while
20: Output: C
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