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Abstract. A multi-label classifier assigns a set of labels to each data
object. A natural requirement in many end-use applications is that the
classifier also provides a well-calibrated confidence (probability) to indi-
cate the likelihood of the predicted set being correct; for example, an
application may automate high-confidence predictions while manually
verifying low-confidence predictions. The simplest multi-label classifier,
called Binary Relevance (BR), applies one binary classifier to each label
independently and takes the product of the individual label probabilities
as the overall label-set probability (confidence). Despite its many known
drawbacks, such as generating suboptimal predictions and poorly cali-
brated confidence scores, BR is widely used in practice due to its speed
and simplicity. We seek in this work to improve both BR’s confidence
estimation and prediction through a post calibration and reranking pro-
cedure. We take the BR predicted set of labels and its product score
as features, extract more features from the prediction itself to capture
label constraints, and apply Gradient Boosted Trees (GB) as a calibra-
tor to map these features into a calibrated confidence score. GB not
only produces well-calibrated scores (aligned with accuracy and sharp),
but also models label interactions, correcting a critical flaw in BR. We
further show that reranking label sets by the new calibrated confidence
makes accurate set predictions on par with state-of-the-art multi-label
classifiers—yet calibrated, simpler, and faster.

Keywords: Multi-label classification · Confidence score calibration ·
Reranking

1 Introduction

Multi-label classification is an important machine learning task wherein one pre-
dicts a subset of labels to associate with a given object. For example, an article
can belong to multiple categories; an image can be associated with several tags;
in medical billing, a patient report is annotated with multiple diagnosis codes.
Formally, in a multi-label classification problem, we are given a set of label can-
didates Y = {1, 2, . . . , L}. Every data point x ∈ R

D matches a subset of labels
y ⊆ Y, which is typically written in the form of a binary vector y ∈ {0, 1}L,
with each bit y� indicating the presence or absence of the corresponding label.
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The goal of learning is to build a classifier h : R
D → {0, 1}L which maps an

instance to a subset of labels. The predicted label subset can be of arbitrary size.
The simplest approach to multi-label classification is to apply one binary

classifier (e.g., binary logistic regression or support vector machine) to predict
each label separately. This approach is called binary relevance (BR) [35] and is
widely used due to its simplicity and speed. BR’s training time grows linearly
with the number of labels, which is considerably lower than many methods that
seek to model label dependencies, and this makes BR run reasonably fast on
commonly used datasets. (Admittedly, BR may still fail to scale to datasets
with extremely large number of labels, in which case specially designed multi-
label classifiers with sub-linear time complexity should be employed instead.
But in this paper, we shall not consider such extreme multi-label classification
problem).

BR has two well-known drawbacks. First, BR neglects label dependencies and
this often leads to prediction errors: some BR predictions are incomplete, such as
tagging cat but not animal for an image, and some are conflicting, such as pre-
dicting both the code Pain in left knee and the code Pain in unspecified
knee for a medical note. Second, the confidence score or probability (we shall use
“confidence score” and “probability” interchangeably) BR associates to its over-
all set prediction y is often misleading, or uncalibrated. BR computes the overall
set prediction confidence score as the product of the individual label confidence
scores, i.e., p(y|x) =

∏L
l=1 p(yl|x). This overall confidence score often does not

reflect reality: among all the set predictions on which BR claims to have roughly
80% confidence, maybe only 60% of them are actually correct (a predicted set
is considered “correct” if it matches the ground truth set exactly). Having such
uncalibrated prediction confidence makes it hard to integrate BR directly into a
decision making pipeline where not only the predictions but also the confidence
scores are used in downstream tasks.

In this work, we seek to address these two issues associated with BR. We first
improve the BR set prediction confidence scores though a feature-based post cal-
ibration procedure to make confidence scores indicative of the true set accuracy
(described in Sect. 2). The features considered in calibration capture label depen-
dencies that have otherwise been missing in standard BR. Next we improve BR’s
set prediction accuracy by reranking BR’s prediction candidates using the new
calibrated confidence scores (described in Sect. 3). There exist multi-label meth-
ods that avoid the label independence assumption from the beginning and per-
form joint probability estimations [7,9,13,22,23,30]; such methods often require
more complex training and inference procedures. In this paper we show that BR
base model together with our proposed post calibration/reranking makes accu-
rate set predictions on par with (or better than) these state-of-the-art multi-label
methods —yet calibrated, simpler, and faster.

2 Calibrate BR Multi-label Predictions

We first address BR’s confidence mis-calibration issue. There are two types of
confidence scores in BR: the confidence of an individual label prediction p(yl|x),
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and the confidence of the entire predicted set p(y|x). In this work we take for
granted that the individual label scores have already been calibrated, which
can be easily done with established univariate calibration procedures such as
isotonic regression [31] or Platt scaling [28,39]. We are concerned here with the
set confidence calibration; note that calibrating all individual label confidence
scores does not automatically calibrate set prediction confidence scores.

2.1 Metrics for Calibration: Alignment Error, Sharpness and MSE

To describe our calibration method, we need the following formal definitions:

• c(y) ∈ [0, 1] is the confidence score associated with the set prediction y;
• v(y) ∈ {0, 1} is the 0/1 correctness of set prediction y;
• e(c) = p[v(y) = 1|c(y) = c] is the average set accuracy among all predic-

tions whose confidence is c. In practice, this is estimated by bucketing pre-
dictions based on confidence scores and computing the average accuracy for
each bucket.

We use the following standard metrics for calibration [21]:

• Alignment error, defined as Ey[e(c(y))− c(y)]2, measures, on average over all
predictions, the discrepancy between the claimed confidence and the actual
accuracy. The smaller the better.

• Sharpness, defined as Vary[e(c(y))], measures how widely spread the confi-
dence scores are. The bigger the better.

• The mean squared error (MSE, also called Brier Score) defined as Ey[(v(y)−
c(y))2], measures the difference between the confidence and the actual 0/1
correctness. It can be decomposed into alignment error, sharpness and an
irreducible constant “uncertainty” due to only classification (not calibration)
error [21]:

Ey[(v(y) − c(y))2]
︸ ︷︷ ︸

MSE

= Vary[v(y)]
︸ ︷︷ ︸
uncertainty

−Vary[e(c(y))]
︸ ︷︷ ︸

sharpness

+Ey[(e(c(y)) − c(y))2]
︸ ︷︷ ︸

alignment error

(1)

Alignment error and sharpness capture two orthogonal aspects of confidence
calibration. A small alignment error implies that the confidence score is well
aligned with the actual accuracy. However, small alignment error, alone, is not
meaningful: the calibration can trivially achieve zero alignment error while being
completely uninformative by assigning to all predictions the same confidence
score, which is the average accuracy among all predictions on the dataset. A
useful calibrator should also separate good predictions from bad ones as much
as possible by assigning very different confidence scores to them. In other words,
a good calibrator should simultaneously minimize alignment error and maximize
sharpness. This can be achieved by minimizing MSE, thus MSE makes a natural
objective for calibrator training. Minimizing MSE leads to a standard regression
task: one can simply train a regressor c that maps each prediction y to its binary
correctness v(y). Note that training a calibrator by optimizing MSE does not
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require estimation of e(c(y)), but evaluating its sharpness and alignment error
does. Estimating e(c(y)) by bucketing predictions has some subtle issues, as we
shall explain later when we present evaluation results in Sect. 2.4.

2.2 Features for Calibration

Besides the training objective, we also need to decide the parametric form of the
calibrator and the features to be used. In order to explain the choices we make,
we shall use the calibration on WISE dataset1 as a running example.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Multi-label set prediction confidence vs. set prediction accuracy on the WISE
dataset. In all sub-figures, each dot represents a group of 100 set predictions with simi-
lar confidence scores. The average confidence score in the group is used as x-coordinate,
and the average prediction accuracy is used as y-coordinate. (a) BR predictions with
the original BR confidence scores. (e) Trivial calibration that gives all predictions
the same confidence score which is the overall set accuracy on the dataset. (b) Iso-
tonic regression (the solid line) trained on all predictions. (f) Predictions with isotonic
regression calibrated confidence. (c) Break down all predictions by the set cardinality
and train a separate isotonic regression (the solid line) for each cardinality. (g) Predic-
tions with confidence calibrated by cardinality-based isotonic regressions. (d) Group
all predictions into 3 categories by the popularity of predicted label combination in
the training data ground truth (popular = the predicted label combination appears at
least 100 times; rare = the predicted label combination appears less than 100 times;
new = the predicted label combination does not appear at all in training data), and
train a separate isotonic regression (the solid line) for each category. (h) Predictions
with confidence calibrated by popularity-based isotonic regressions. To simplify the
presentation, all calibrators are trained and evaluated on the same data.

1 https://www.kaggle.com/c/wise-2014/data.

https://www.kaggle.com/c/wise-2014/data
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Let us start by visualizing BR’s predictions together with its original set
prediction confidence calculated as p(y|x) =

∏L
l=1 p(yl|x), in which the indi-

vidual label probabilities p(yl|x) have been well-calibrated by standard isotonic
regression procedures. We group about every 100 predictions with similar confi-
dence scores into a bucket, and plot those buckets as dots treating the average
confidence in the group as the x-coordinate and treating the average prediction
accuracy in the group as the y-coordinate2. Figure 1a shows that the set con-
fidence scores computed this way are not calibrated even when the individual
label confidence scores have been well-calibrated. Well calibrated set predictions
should approximately lie on the diagonal line. In the figure, predictions above the
diagonal are under-confident and those below the diagonal are over-confident.

The simplest way to improve the alignment is to fit another isotonic regression
to these dots (see Fig. 1b), and use the regression outputs as the new calibrated
set prediction confidence scores (Fig. 1f). This additional calibration makes the
dots align with the diagonal much better. Quantitatively, the alignment error
has been reduced to a small number. However, as mentioned earlier, having a
small alignment error alone is not enough, as a trivial calibrator that outputs a
constant would achieve zero alignment error (Fig. 1e). One would also need to
maximize the sharpness of the scores, by assigning very different scores to good
predictions and bad predictions. Figure 1c and d show that there are features
that can help the calibrator better separate good predictions from bad ones.

Figure 1c breaks down all predictions by the cardinality of the predicted set
(i.e. the number of labels predicted). If we look at all predictions with uncali-
brated confidence around 0.7, their average accuracy is around 0.58 (as shown in
Fig. 1b). However, Fig. 1c shows that those singleton predictions have accuracy
around 0.8; those predictions containing 2 labels only have accuracy about 0.54;
and those empty set predictions have 0 accuracy (on this particular dataset,
the ground truth set is always non-empty). Clearly, predictions with different
cardinalities require different calibration mappings from the uncalibrated con-
fidence to the actual accuracy. Fitting a separate isotonic regression for each
cardinality results in Fig. 1g, which is a clear improvement over the calibration
without cardinality (Fig. 1f); thus cardinality feature greatly increases sharpness
and reduces MSE. Visually, more points have moved towards left and right ends.

Another useful feature is the popularity of predicted label set in the training
data (i.e., prior probability). Between two predictions with the same uncalibrated
BR confidence, the one that is more popular often has a higher chance of being
correct, as shown in Fig. 1d. One can quantize the prior probability into intervals
and train separate isotonic regressions for different intervals. Figure 1h shows
that this also performs better than having only one isotonic regression.

Both set cardinality and prior probability are features defined on the
whole label set, rather than individual labels. Such features capture constraints
and dependencies among labels, which were not originally considered by BR.

2 This particular way of bucketing is only for visualization purpose; when we evaluate
calibration quantitatively we follow the standard practice of using 10 equal-width
buckets.
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Therefore these features supplement BR’s own prediction score and allow the
calibrator to make better overall judgments on the predicted set. There can be
other features that help the calibrator better judge set predictions. In order to
incorporate arbitrary number of features and avoid manual partitioning of the
data and training separate calibrators (which quickly becomes infeasible as the
number of features grows), a general multi-variate regressor should be employed.
The multi-variate extension of isotonic regression exists [32], but it is not well
suited to our problem because some features such as cardinality do not have
a monotonic relationship with the calibrated confidence (see Fig. 1c). [21] pro-
poses KNN and regression trees as calibrators for general structured prediction
problem.

2.3 Calibrator Model Training

In this work, we choose Gradient Boosted Trees (GB) [11] as the calibrator
model. Similar to regression trees, GB as a multi-variate regressor automati-
cally partitions the prediction’s feature space into regions and outputs (approx-
imately) the average prediction accuracy in each region as the calibrated con-
fidence score. GB often produces smoother output than trees and generalizes
better. GB is also very powerful in modeling complex feature interactions auto-
matically by building many trees on top of the features. To leverage its power we
also use the binary representation of the set prediction y itself as features for GB.
This way GB can discover additional rules concerning certain label interactions
that are not described by the manually designed features (for example, “if two
conflicting labels A and B are both predicted, the prediction is never correct,
therefore lower the confidence score”). It is also possible to use instance features
x during calibration, but we do not find it helpful because BR was already built
on x.

There are two commonly used GB variants [11]. The first variant, GB-MSE,
uses the tree ensemble score as the output, and MSE as the training objective.
The second variant, GB-KL, adds a sigmoid transformation to the ensemble
score and uses KL-divergence as the training objective. GB-MSE has the advan-
tage of directly minimizing MSE, which matches the evaluation metric used for
calibration (see Sect. 2.1). But it has the disadvantage that its output is not
bounded between 0 and 1 and one has to clip its output in order to treat that
as a confidence score.

GB-KL has the advantage of providing bounded output, but its training
objective does not directly match the evaluation metric used for calibration;
note, however, that minimizing KL-divergence also encourages the model output
to match the average prediction accuracy, hence achieves the calibration effect.
It may appear that one could get the best of both worlds by having sigmoid
transformation and MSE training objective at the same time. Unfortunately,
adding sigmoid makes MSE a non-convex function of the ensemble scores, thus
hard to optimize. In this paper, we choose GB-MSE as our GB calibrator and
shall simply call it GB from now on. In supplementary material, we show that
GB-KL has very similar performance.
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Each BR set prediction is transformed to a feature vector (containing original
BR confidence score, set cardinality, set prior probability, and set binary repre-
sentation) and the binary correctness of the prediction is used as the regression
target. Since the goal of GB calibrator is to objectively evaluate BR’s predic-
tion accuracy, it is critical that the calibration data to be disjoint from the BR
classifier training data. Otherwise, when BR over-fits its training data, the cal-
ibrator will see over-optimistic results on the same data and learn to generate
over-confident scores. Similarly, it is also necessary to further separate the label
calibration data and the set calibration data, since the product of the calibrated
label probabilities is used as input to the set calibrator training.

Imposing Partial Monotonicity. Imposing monotonicity is a standard prac-
tice in univariate calibration methods such as isotonic regression [31] and Platt
scaling [28,39] as it avoids over-fitting and leads to better interpretability. Impos-
ing (partial) monotonicity for a multi-variate calibrator is more challenging. Cer-
tain features considered in calibration are expected to be monotonically related
to the confidence. For example, the confidence should always increase with the
popularity (prior probability) of the predicted set, if all other features of the pre-
diction are unchanged. The same is true for BR score. The rest of the features,
including the cardinality of the set and the binary representation of the set, do
not have monotonic relations with confidence. Therefore the calibration function
is partially monotonic. We have done additional experiments on imposing partial
monotonicity for the GB calibrator but did not observe significant improvement
(details and experiment results are in supplementary material).

Table 1. Datasets characteristics; label sets = number of label combinations in train-
ing set; cardinality = average number of labels per instance; inst/label = the aver-
age number of training instances per label. Datasets are obtained from http://mulan.
sourceforge.net/datasets-mlc.html, http://cocodataset.org and https://www.kaggle.
com/c/wise-2014/data

Dataset BIBTEX OHSUMED RCV1 TMC WISE MSCOCO

Domain bkmark medical news reports articles image

Labels 159 23 103 22 203 80

Label sets 2,173 968 622 1,104 2,782 19,597

Features 1,836 12,639 47,236 49,060 301,561 4,096

Instances 7,395 13,929 6,000 28,596 48,643 123,287

Cardinality 2.40 1.68 3.21 2.16 1.45 2.90

Inst/label 89 811 150 2,244 278 3,572

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
http://cocodataset.org
https://www.kaggle.com/c/wise-2014/data
https://www.kaggle.com/c/wise-2014/data
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2.4 Calibration Results

We test the proposed GB calibrator for BR set predictions on 6 commonly used
multi-label datasets (see Table 1 for details). Each dataset is randomly split
into training, calibration, validation and test subsets. BR model with logistic
regression base learners is trained on training data; isotonic regression label
calibrators and GB set calibrators are trained on (different parts of) calibration
data. All hyper parameters in BR and calibrators are tuned on validation data.
Calibration results are reported on test data.

For comparison, we consider the following calibrators:

• uncalib: use the uncalibrated BR probability as it is;
• isotonic: calibrate the BR probability with isotonic regression;
• card isotonic: for each label set cardinality, train one isotonic regression;
• tree: use the features considered by GB, train a single regression tree.

To make a fair comparison, for all methods, individual label probabilities have
already been calibrated by isotonic regressions. We focus on their abilities to
calibrate set predictions. BR prediction is made by thresholding each label’s
probability (calibrated by isotonic regression) at 0.5. This corresponds to the set
with the highest BR score.

The evaluation metrics we use are MSE, sharpness and alignment error, as
described in Sect. 2.1. Following the standard practice, we use 10 equal-width
buckets to estimate sharpness and alignment error. One issue with evaluation
by bucketing is that using different number of buckets leads to different estima-
tions of alignment error and sharpness (but not MSE and uncertainty, whose
computations do not depends on bucketing). In fact, increasing the number of
buckets will increase both the estimated alignment error and sharpness by the
same amount, due to Eq. 1. Using 10 buckets often produces negligible alignment
error (relative to MSE), and the comparison effectively focuses on sharpness. This
amounts to maximizing sharpness subject to a very small alignment error [14],
which is often a reasonable goal in practice. All calibrators are able to achieve
small alignment error (on the order of 10−3 and contributing to less than 10% of
the MSE), so we do not report that. The results are summarized in Table 2. All
calibrators improve upon the BR uncalibrated probabilities. Our GB calibrator

Table 2. BR prediction calibration performance in terms of MSE (the smaller the
better) and sharpness (the bigger the better). Bolded numbers are the best.

Dataset Uncertain Uncalib Isotonic Card isotonic Tree GB

MSE Sharp MSE Sharp MSE Sharp MSE Sharp MSE Sharp

BIBTEX 0.139 0.193 0.007 0.140 0.002 0.109 0.038 0.086 0.065 0.068 0.072

OHSUMED 0.232 0.226 0.015 0.221 0.013 0.182 0.051 0.211 0.039 0.189 0.047

RCV1 0.247 0.175 0.077 0.175 0.075 0.159 0.093 0.134 0.129 0.123 0.126

TMC 0.212 0.192 0.019 0.192 0.020 0.192 0.022 0.194 0.029 0.180 0.032

WISE 0.249 0.252 0.017 0.234 0.017 0.151 0.098 0.166 0.093 0.147 0.102

MSCOCO 0.227 0.158 0.075 0.151 0.075 0.150 0.076 0.163 0.070 0.143 0.083
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achieves the overall best MSE and sharpness calibration performance, due to use
of additional features extracted from set predictions.

3 Rerank Multi-label Predictions

Now we aim to improve BR’s prediction accuracy, by fixing some of the prediction
mistakes BR made due to ignoring label dependencies. Our solution is based on
the calibrator we just developed. Traditionally, the only role of a calibrator
is to map an uncalibrated confidence score to a calibrated confidence score.
In that sense the calibrator usually does not affect the classification, only the
confidence. In fact, popular univariate calibrators such as isotonic regression and
Platt scaling implement monotonic functions, thus preserve the ranking/argmax
of predictions. For our multi-variate GB calibrator, however, this is not the case.
Even if we constrain the calibrated confidence to be monotonically increasing
with the BR prediction scores, there are still other features that may affect
the ranking; in particular the argmax predictions before and after calibration
might be different y sets. If indeed different, the prediction based on calibrated
confidence takes into account label dependencies and other constraints (which
BR does not), and is more likely to be the correct set (even when the calibrated
confidence is not very high in absolute terms). Therefore we can also use GB
as a multi-label wrapper on top of BR to rerank its predictions. We name this
method as BR-rerank . Figure 2 shows two example images from the MSCOCO
datasets on which BR-rerank corrects BR’s predictions.

Fig. 2. Two example images from the MSCOCO datasets on which BR-rerank corrects
BR’s predictions. For (a), BR-rerank adds the correct label baseball glove to BR’s
predictions. For (b), BR-rerank removes the incorrect label toothbrush from BR’s
predictions.
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To do so, we use a two stage prediction pipeline. For each test instance x,
we first list the top K label set candidates y by highest BR uncalibrated scores.
This can be done efficiently using a dynamic programming procedure which
takes advantage of the label independence assumption made in BR, described
in [23], and included in the supplementary material of this paper for the sake
of completeness. Although the label independence assumption does not hold in
practice, we find empirically that when K is reasonably large (e.g., K = 50), the
correct y is often included in the top-K list. The chance that the correct answer
is included in the top-K list is commonly called “oracle accuracy”, and it is an
upper bound of the final prediction accuracy. Empirically, we observe the oracle
accuracy to be much higher than the final prediction accuracy, indicating that
the candidate generation stage is not a bottleneck of final performance.

Prediction stage two: send the top set candidates with their scores and addi-
tional features to the GB calibrator, and select the one with the highest cali-
brated confidence as the final prediction. The calibrator has to be trained on
more than top-1 BR candidates (on a separate calibration dataset) to evaluate
correctly prediction candidates, so we train the GB calibrator on top-K candi-
dates. Table 3 shows the two-stage BR-rerank predictions on the two example
images in Fig. 2.

Table 3. The two-stage BR-rerank predictions on the two example images in Fig. 2. For
each example image, the left column of the table shows the top-5 set prediction candidates
generated by BR. The middle column shows the uncalibrated BR confidence score. The
right column shows the calibrated BR-rerank confidence score. For Fig. 2a: BR predicts
the incorrect set {person,baseball bat} with confidence 0.58. BR-rerank predicts the
correct set {person, baseball bat, baseball glove} with confidence 0.17. For Fig. 2b:
BR predicts the incorrect set {person, remote, toothbrush} with confidence 0.70. BR-
rerank predicts the correct set {person, remote} with confidence 0.18.

Prediction on Fig. 2a

y candidates BR score BR-rerank score

person, baseball bat 0.58* 0.16

person, baseball bat, baseball glove 0.35 0.17*

person, handbag, baseball bat 0.02 0.04

person, sports ball, baseball bat 0.02 0.08

person, handbag, baseball bat, baseball glove 0.01 0.03

Prediction on Fig. 2b

y candidates BR score BR-rerank score

person, remote, toothbrush 0.70* 0.16

person, remote 0.24 0.18*

person, toothbrush 0.03 0.05

person 0.01 0.02

person, tennis racket, remote, toothbrush 0.01 0.01
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3.1 Conceptual Comparison with Related Multi-label Classifiers

Although the proposed BR-rerank classifier has a very simple design, it has
some advantages over many existing multi-label classifiers. Here we make some
conceptual comparisons between BR-rerank and related multi-label classifiers.

BR-rerank can be seen as a stacking method in which a stage-1 model pro-
vides initial estimations and a stage-2 model uses these estimations as input and
makes the final decision. There are other stacking methods proposed in the liter-
ature, and the two most well-known ones are called 2BR [15,34] and DBR [25].
The stage-1 models in 2BR and DBR are also BR models just as in BR-rerank.
The stage-2 models in 2BR and DBR work differently. In 2BR, the stage-2 model
predicts each label � with a separate binary classifier which takes as input the
original instance feature vector x as well as all label probabilities predicted by
the stage-1 model. In DBR, the stage-2 model predicts each label � with a sep-
arate binary classifier which takes as input the original instance feature vector
x as well as the binary absence/presence information of all other labels. The
absence/presence of label � itself is not part of the input to avoid learning a
trivial mapping. During training, the absence/presence information is obtained
from the ground truth; during prediction, it is obtained from the stage-1 model’s
prediction. Clearly for DBR there is some inconsistency on how stage-2 inputs
are obtained. BR-rerank and 2BR do not suffer from such inconsistency. All three
stacking methods BR-rerank, 2BR, and DBR try to incorporate label dependen-
cies into final classification. However, both 2BR and DBR have a critical flaw:
when their stage-2 models make the final decision for a particular label, they
do not really take into account the final decisions made for other labels by the
stage-2 model; they instead only consider the initial estimations on other labels
made by the stage-1 model, which can be quite different. As a result, the final
set predictions made by 2BR and DBR may not respect the label dependen-
cies/constraints these models have learned. By contrast, the stage-2 model in
BR-rerank directly evaluates the final set prediction (based on its binary repre-
sentation and other extracted features) to make sure that the final set prediction
satisfies the desired label dependencies/constraints. For example, in the RCV1
dataset, each instance has at least one label. But DBR predicted the empty set
on 6% of the test instances. By contrast, BR-rerank never predicted empty set
on this dataset.

Many multi-label methods avoid the label independence assumption made in
BR and model the joint distribution p(y|x) in more principled ways. Examples
include Conditional Random Fields (CRF) [13], Conditional Bernoulli Mixtures
(CBM) [23], and Probabilistic Classifier Chains (PCC) [7,22,24,30]. Despite the
joint estimation formulation, CRF, CBM, and PCC in practice often produce
over-confident set prediction confidence scores, due to overfitting. Their predic-
tion confidence must also be post-calibrated.

The pair-wise CRF model [13] captures pairwise label interactions by esti-
mating 4 parameters for each label pair. However, because the model needs to
assign dedicated parameters to different label combinations, modeling higher
order label dependencies becomes infeasible. The BR-rerank approach we
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propose relies on boosted trees to automatically build high order interactions
as tree learns their splits on the binary representation of the label set – there is
no need to allocate parameters in advance. There is another CRF model designed
specifically to capture exclusive or hierarchical label relations [9]; this works only
when the label dependency graph is strict and a priori known.

CBM is a latent variable model and represents the joint as a mixture of binary
relevance models. However, it is hard to directly control the kinds of dependencies
CBM learns, or to enforce constraints in the prediction. For example, CBM often
predicts the empty set even on dataset where empty prediction is not allowed.
There is no easy way to enforce the cardinality constraint in CBM.

PCC decomposes the joint p(y|x) into a product of conditional probabilities
p(y1|x)p(y2|x, y1) · · · p(yL|x, y1, . . . , yL−1), and reduces a multi-label problem to
L binary problems, each of which learns a new label given all previous labels.
However, different label chaining orders can lead to different results, and to find
the best order is often a challenge. In BR-rerank, all labels are treated as features
in the GB calibrator training and they are completely symmetric.

The Structured Prediction Energy Network (SPEN) [1] uses deep neural net-
works to efficiently encode arbitrary relations between labels, which to large
degree avoids parameterization issue associated with pair-wise CRF, but it can-
not generate a confidence score for its MAP prediction as computing the nor-
malization constant is intractable. The Predict-and-Constraint method (PC) [2]
specifically handles cardinality constraint (but not other label constraints or rela-
tions) during learning and prediction. Deep value network (DVN) [18] trains a
neural network to evaluate prediction candidates and then uses back-propagation
to find the prediction that leads to the maximum score. The idea is similar to
our BR-rerank idea. The difference is: DVN could only use the binary encoding
of the label set, but not any higher level features extracted from the label set,
such as cardinality and prior set probability. That is because its gradient based
inference makes it very difficult to directly incorporate such features. There are
methods that seek to rank labels [3,12]. Our method differs from theirs in that
we rank label sets as opposed to individual labels, and we take into account label
dependencies in the label set.

3.2 Classification Results

We test the proposed BR-rerank classifier on 6 popular multi-label datasets (see
Table 1 for details). All datasets used in experiments contain at least a few thou-
sands instances. We do not take datasets with only a few hundred instances as
their testing performance tends to be quite unstable. We also do not consider
datasets with extremely large number of labels as our method is not designed
for extreme classification (our method aims to maximize set accuracy but on
extreme data it is very unlikely to predict the entire label set correctly due
to large label set cardinality and annotation noise). We compare BR-rerank
with many other well-known multi-label methods: Binary Relevance (BR) [35],
2BR [15,34], DBR [25], pair-wise Conditional Random Field (CRF) [13], Condi-
tional Bernoulli Mixture (CBM) [23], Probabilistic Classifier Chain (PCC) [30],
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Structured Prediction Energy Network (SPEN) [1], PD-Sparse (PDS) [38],
Predict-and-Constrain (PC) [2], Deep value network (DVN) [18], Multi-label
K-nearest neighbors (KNN) [41], and Random k-label-sets (RAKEL) [36].

Table 4. Prediction performance in terms of set accuracy (top) and instance F1 (bot-
tom). Numbers are shown as percentages. Bold numbers are the best ones on each
dataset. “–” means the method could not finish within 24 h on a server with 56 cores
and 256G RAM or 4 NVIDIA Tesla V100 GPUs. The ranking indicates for each method,
on average over datasets, what position its performance is (lower is better). Our BR-
rerank has the best average ranking on both measures. Note also that BR is not the
worst as one might naively assume. Hyper parameters for all methods have been tuned
on validation set.

Dataset BR BR-rerank 2BR DBR CBM CRF SPEN PDS DVN PC PCC RAKEL KNN

BIBT 16.6 21.5 16.1 20.2 22.9 23.3 14.8 16.1 16.2 20.3 21.4 18.3 8.4

OHSU 36.6 42.0 37.5 37.6 40.5 40.4 29.1 34.8 18.6 29.5 38.0 39.3 25.4

RCV1 44.5 53.2 42.3 45.8 55.3 53.8 27.5 40.8 13.7 39.7 48.7 46.0 46.2

TMC 30.4 33.3 32.1 31.7 30.8 28.2 26.7 23.4 20.3 23.0 31.3 27.6 18.9

WISE 52.9 60.5 51.8 55.8 61.0 46.4 – 52.4 28.3 – 55.9 3.5 2.4

MSCO 34.7 35.9 33.7 32.0 31.1 35.1 34.1 25.0 29.9 31.1 32.1 32.6 29.1

Ranking 6.3 1.8 6.7 5.7 3.3 3.8 10.0 9.8 11.2 10.0 4.5 6.8 11.0

Dataset BR BR-rerank 2BR DBR CBM CRF SPEN PDS DVN PC PCC RAKEL KNN

BIBT 35.9 42.2 36.7 40.1 45.3 46.2 38.6 40.4 47.3 47.5 40.9 38.3 23.0

OHSU 62.9 67.5 62.9 61.5 67.2 65.6 58.8 66.4 60.0 60.5 61.7 62.3 48.6

RCV1 77.0 78.8 77.5 72.8 80.3 75.0 66.5 76.7 36.3 71.7 75.6 76.1 72.3

TMC 65.8 66.8 67.9 66.1 65.2 64.4 66.2 64.0 65.5 61.7 64.9 63.6 52.2

WISE 68.3 75.4 69.1 69.9 76.0 60.7 – 73.6 62.3 – 69.7 6.2 5.6

MSCO 73.0 73.2 72.6 69.6 70.0 73.9 73.2 64.8 72.7 72.7 69.6 71.7 68.2

Ranking 6.3 2.5 5.5 7.3 4.0 5.7 8.3 6.8 7.5 8.8 7.5 8.7 12.0

For evaluation, we report set accuracy and instance F1, defined as:

set accuracy =
1
N

N∑

n=1

I(y(n) = ŷ(n)),

instance F1 =
1
N

N∑

n=1

2
∑L

l=1 y
(n)
l ŷ

(n)
l

∑L
l=1 y

(n)
l +

∑L
l=1 ŷ

(n)
l

,

where y(n) and ŷ(n) are the ground truth and predicted label set for the n-
th instance, and I(y(n) = ŷ(n)) returns 1 when the prediction is perfect and 0
otherwise.

To make a fair comparison, we use logistic regressions as the underlying
learners for BR as well as the stage-1 models in BR-rerank, 2BR and DBR. We
use gradient boosting as the underlying learners in PCC as well as the stage-
2 models in BR-rerank, 2BR and DBR. Each dataset is randomly split into
training, validation and test subsets. All classifiers are trained on the training
set, with hyper parameters tuned on validation set. Supplementary material
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contains implementations and hyper parameters tuning details. For BR-rerank
and 2BR, since the stage-2 model uses stage-1 model’s out-of-sample prediction
as input, the stage-1 model and stage-2 model are trained on different parts
of the training data. For DBR, since the stage-2 model training only takes the
ground truth labels as input, both stage-1 model and stage-2 model are trained
on the whole training set.

Test performance is reported in Table 4. As expected, by reranking BR-
independent-prediction candidates, BR-rerank outperforms BR significantly. We
also observe that generally BR-rerank only needs to rerank the top-10 candidates
from BR in order to achieve the best performance (supplementary material shows
how its performance changes as K increases). On each dataset, we rank all algo-
rithms by performance, and report each algorithm’s average ranking across all
datasets. BR-rerank has the best average ranking with both metrics, followed by
CBM and CRF. We emphasize that with slightly better performance, BR-rerank
is noticeably simpler to use than CBM and CRF. CBM and CRF require imple-
menting dedicated training and prediction procedures, while BR-rerank can be
ran by simply combining existing machine learning libraries such as LIBLIN-
EAR [10] for BR and Xgboost [4] for GB. BR-rerank is also much faster than
CBM and CRF. Its running time is determined mostly by its stage one, the BR
classifier training. See Table 5 for a comparison.

Table 5. Training time of different methods, measured in seconds. All algorithms run
multi-threaded on a server with 56 cores.

Dataset BIBTEX OHSUMED RCV1 TMC WISE MSCOCO

BR 4 3 7 8 80 1380

BR-rerank 9 6 10 11 88 1393

CBM 64 210 70 224 1320 8520

CRF 353 268 1223 771 16363 14760

4 Other Related Work and Discussion

There are many other approaches to multi-label classification. Some of them
focus on exploiting label structures [6,19,27,42]. Several approaches adapt exist-
ing machine learning models, such as Bayesian network [40], recurrent neural
networks [26,29], and determinantal point process [37].

The idea of first generating prediction candidates and then reranking them
using richer features has been considered in several natural language processing
tasks, including parsing [8] and machine translation [33]. Here we show that the
reranking idea, with properly designed models and features, is well suited for
multi-label classification as well. Generative Adversarial Nets (GANs) [16] also
employ two models, one for generating samples and one for judging these sam-
ples. GANs are usually trained in an unsupervised fashion, and are mainly used
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for generating new samples. By contrast, our BR-rerank is trained in supervised
fashion, and its main goal is to do classification. Also the two models in GANs
are trained simultaneously, while the two models in BR-rerank are trained in
separate stages.

Besides isotonic regression and Platt scaling, there are also some recent
developments on binary, multi-class, and structured prediction calibration meth-
ods [5,17,20,21]. Our work instead focuses on how to design the calibrator model
and features for the BR multi-label classifier and how to take advantage of the
calibrated confidence to get better multi-label predictions.

5 Conclusion

We improve BR’s confidence estimation and prediction through a simple post
calibration and reranking procedure. We take the BR predicted set of labels and
its uncalibrated confidence as features, extract more features from the predic-
tion that capture label constraints, such as the label set cardinality and prior
probability, and apply gradient boosted trees (GB) as a calibrator to map the
features to a better-calibrated confidence score. GB not only uses these manually
designed features but also builds trees on binary label features to automatically
model label interactions. This allows the calibrator to better separate good pre-
dictions from bad ones, yielding new confidence scores that are not only well
aligned with accuracy but also sharp. We further demonstrate that using the
new confidence scores we are able to rerank BR’s prediction candidates to the
point it outperforms state-of-the-art classifiers. Our code and data are available
at https://github.com/cheng-li/pyramid.
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