
An Empirical Study of Skip-Gram Features
and Regularization for Learning

on Sentiment Analysis

Cheng Li(B), Bingyu Wang, Virgil Pavlu, and Javed A. Aslam

College of Computer and Information Science, Northeastern University,
Boston, MA, USA

{chengli,rainicy,vip,jaa}@ccs.neu.edu

Abstract. The problem of deciding the overall sentiment of a user
review is usually treated as a text classification problem. The simplest
machine learning setup for text classification uses a unigram bag-of-words
feature representation of documents, and this has been shown to work
well for a number of tasks such as spam detection and topic classification.
However, the problem of sentiment analysis is more complex and not as
easily captured with unigram (single-word) features. Bigram and trigram
features capture certain local context and short distance negations—thus
outperforming unigram bag-of-words features for sentiment analysis. But
higher order n-gram features are often overly specific and sparse, so they
increase model complexity and do not generalize well.

In this paper, we perform an empirical study of skip-gram features
for large scale sentiment analysis. We demonstrate that skip-grams can
be used to improve sentiment analysis performance in a model-efficient
and scalable manner via regularized logistic regression. The feature spar-
sity problem associated with higher order n-grams can be alleviated by
grouping similar n-grams into a single skip-gram: For example, “waste
time” could match the n-gram variants “waste of time”, “waste my time”,
“waste more time”, “waste too much time”, “waste a lot of time”, and so
on. To promote model-efficiency and prevent overfitting, we demonstrate
the utility of logistic regression incorporating both L1 regularization (for
feature selection) and L2 regularization (for weight distribution).

Keywords: Sentiment analysis · Skip-grams · Feature selection ·
Regularization

1 Introduction

The performance of sentiment analysis systems depends heavily on the underly-
ing text representation quality. Unlike in traditional topical classification, simply
applying standard machine learning algorithms such as Naive Bayes or SVM to
unigram (“bag-of-words”) features no longer provides satisfactory accuracy [19].
In sentiment analysis, unigrams cannot capture all relevant and informative fea-
tures, resulting in information loss and suboptimal classification performance.
c© Springer International Publishing Switzerland 2016
N. Ferro et al. (Eds.): ECIR 2016, LNCS 9626, pp. 72–87, 2016.
DOI: 10.1007/978-3-319-30671-1 6

An Empirical Study of Skip-Gram Features and Regularization 73

For example, negation is a common linguistic construction that affects polarity
but cannot be modeled by bag-of-words [24]. Finding a good feature represen-
tation for documents is central in sentiment analysis. Many rule and lexicon
based methods are proposed to explicitly model negation relations [19,24]. How-
ever, rule and lexicon based approaches do not do well when the words’ meanings
change in specific domains. Researchers have found that applying machine learn-
ing algorithms to n-gram features captures some negations automatically and
outperforms rule based systems [23]. For large datasets, frequent bigrams such
as “not recommend” and “less entertaining” can model some negation-polarity
word pairs. N -gram features are not only good at modeling short distance nega-
tions, but are also very useful in capturing subtle meanings, including implicit
negations. For example, as mentioned in [19], the negative sentence “How could
anyone sit through this movie?” contains no single negative unigram. However,
the bigram “sit through” is a strong indicator for negative sentiment.

Although n-gram features are more powerful than unigrams, the diversity
and variability of sentiment expressions sometimes makes strict n-gram matching
hard to apply. Should the bigram “waste time” match the text “waste a lot of
time”? A skip-gram [11] is an n-gram matched loosely in text, where looseness
can be parameterized by a slop value, the number of additional words allowed
in a matching span. For example with slop=1 the skip-gram “waste time” would
match “waste time”, “waste of time”, “waste more time”, and “waste my time”.
With slop=2 it would also match “waste of my time” and “waste too much
time”. With slop=3 it can even match “waste a lot of time”. The advantage
of loose matching, informally, is that fewer features can match more phrases,
which is good in several ways: First, it addresses the semantic matches that
strict n-gram matching fails at, such as the n-gram “waste time” failing to match
the text “waste my time”. Second, higher order n-grams with n > 3 are often
overly specific and sparse, and they only increase model complexity without
generalizing well. Grouping similar n-grams to the same skip-gram alleviates
this problem and makes learning more effective.

In this paper, the first research question we investigate is whether skip-
grams are good features for large scale sentiment analysis when used by
machine learning classifiers. We find that skip-gram features perform consistently
better than unigram and n-gram features on all the data sets explored in our
study. Skip-gram features also outperform word vector features on 2 of the 3
datasets we use, with inconclusive1 results on the third (IMDB) dataset. We
further investigate how varying the slop parameter affects sentiment analysis
predictions. We generally find that slop=1 helps as opposed to tight n-gram
matches at slop=0, and increasing slop beyond 1 also helps, but to a lesser
degree.

The second research question we investigate is an appropriate learn-
ing mechanism that can handle such a large set of features, address-
ing sparsity, speed, feature selection, and model-efficiency, all while retaining

1 On the IMDB dataset, skip-grams perform worse than word vectors on the predefined
test set, but better on randomly sampled test sets, as discussed in Sect. 3.

74 C. Li et al.

classification performance. An obvious concern when utilizing skip-grams with
large size and slop is the large number of potential features generated. Even
for the modest IMDB dataset with 50,000 reviews, we find that the number of
potential skip-grams generated when using size up to 3 and slop up to 2 is
nearly 2 million. For many learning algorithms, constructing a model from so
many features is difficult. The model can overfit, and the prediction scores it
produces are difficult to interpret. We investigate how to select a significantly
smaller subset of features that yields good performance.

A natural way to deal with millions of features is to either employ feature
selection a priori or to build selection into the training algorithm. The latter
is often done via regularization. For example, L1-regularization [12] provides a
convex surrogate to the L0 regularization, which linearly penalizes the number
of features used in the model. Thus L1-regularization encourages a frugal use
of features. In this paper, L1-regularization is our main mechanism for feature
selection, demonstrated for Logistic Regression and SVM. In contrast, the other
regularization often used—and one that we argue is necessary for sentiment
analysis—is L2-regularization [12]. In the presence of correlated features, L2-
regularization encourages the use of all correlates by explicitly penalizing large
feature weights: small weights associated with multiple correlates will incur a
lower penalty than a high weight associated with a single correlate. Having
correlated features in the model can be very useful for generalizability and inter-
pretability, at the cost of model efficiency as greater numbers of features are
used. Hence, the L1- and L2-regularization trade-off: L1 encourages the frugal
use of features, while L2 encourages judicious use of correlated features. For
the problem of sentiment analysis, where sizable feature sets comprised of skip-
grams generated with large n and slop are useful, we demonstrate the benefits
of having a learning model that is both L1 and L2 regularized [12].

1.1 Related Work

Skip-Grams. For sentiment analysis on Twitter data, Fernández et al. [8]
showed that using both n-grams and skip-grams give better performance than
using n-grams alone. However, the dataset they used is small and tweets are
usually short. It is unclear how many frequent skip-grams they extracted (the
exact number is not mentioned). Also no feature selection is performed to pick
informative skip-grams. As such, it is natural to ask whether skip-grams are still
helpful on large datasets, where a huge number of frequent and possibly noisy
skip-grams can be extracted. König and Brill [13] used skip-grams in deciding
sentiments for movie review data and Microsoft customer feedback data via a
multi-stage process. First, skip-gram candidates are generated based on a heuris-
tic. Human assessors then review the skip-gram candidates and manually select
the informative ones. At prediction time, a test document is checked to see if it
matches any of the selected skip-grams; if it does, a label is assigned immediately
based on the matched skip-gram; if not, a classifier trained on only n-grams is
used to make a prediction. This hybrid approach is shown to work better than
the standard method based purely on n-grams. However, it does not fully utilize

An Empirical Study of Skip-Gram Features and Regularization 75

the power of skip-grams: since manual assessment is time consuming, only a very
small number (300 in their experiments) of skip-gram candidates are generated
and presented to the human assessors, and an even smaller number of features
is kept. For a small number of selected skip-grams to work well, it is essential
for them to be orthogonal so that different aspects of the data can be covered
and explained. But skip-grams are judged independently of each other in both
the automatic generating procedure and the human assessment procedure; as
a result, individually informative features, when put together, could be highly
correlated and redundant for prediction purposes. Also, the skip-grams selected
are not used in conjunction with n-grams to train classifiers. In our proposed
method, the feature selection is done by regularized learning algorithms, which is
a much cheaper solution compared with manual selection. This reduction in cost
makes it possible to generate and evaluate a large number of skip-gram can-
didates. The feature selection algorithm considers all features simultaneously,
making the selected feature set less redundant.

Word Vectors. Another related line of research performs sentiment analysis
based on word vectors (or paragraph vectors) [14,15,18]. Typical word vectors
have only hundreds of dimensions, and thus represent documents more concisely
than skip-grams do. One common way of building word vectors is to train them
on top of skip-grams. After this training step, skip-grams are discarded and only
word vectors are used to train the final classifier. Classifiers trained this way are
smaller compared with those trained on skip-grams. One should note, however,
that training classifiers on a low-dimensional dense word vector representation is
not necessarily faster than training classifiers on a high-dimensional sparse skip-
gram representation, for two reasons: first, low-dimensional dense features often
work best with non-linear classifiers while high-dimensional sparse features often
work best with linear classifiers, and linear classifiers are much faster to train.
Second, sparsity in the feature matrix can be explored in the latter case to further
speed up training. Although the idea of building word vector representations on
top of skip-grams is very promising, current methods have some limitations.
Documents with word vector representations are compressed or decoded in a
highly complicated way, and the learned models based on word vectors are much
more difficult to interpret than those based directly on skip-grams. For example,
to understand what Amazon customers care about in baby products, it is hard
to infer any latent meaning from a word vector feature. On the other hand, it is
very easy to interpret a high-weight skip-gram feature such as “no smell”, which
includes potential variants like “no bad smell”, “no medicine-like smell” and “no
annoying smell”. Another limitation is that, while word vectors are trained on
skip-grams, they do not necessarily capture all the information in skip-grams. In
our method, the classifiers are trained directly on skip-grams, and thus can fully
utilize the information provided by skip-grams. We exploit the sparsity in the
feature matrix to speed up training, and feature selection is employed to shrink
the size of the classifier. Experiments show that our method generally achieves
both better performance and better interpretability.

76 C. Li et al.

2 Learning with Skip-Gram Features

Extracting skip-grams from documents and computing matching scores is an
IR, or NLP preprocessing problem which should be solved before the learning.
We divide it into four steps: First, we lemmatize documents into tokens with
the Stanford NLP package [1]. All stop-words are kept as they are often useful
for sentiment analysis tasks. Second, preprocessed documents are sent to the
search engine ElasticSearch [2] and an inverted index is built. Third, skip-gram
candidates which meet the size, slop and document frequency requirements are
gathered from the training document collection. To save memory and computa-
tion, skip-grams with very low document frequencies are discarded.

2.1 Skip-Gram Matching using ElasticSearch

In the last preprocessing step, we determine the matched documents for each of
the skip-gram candidates and their matching scores. There are several slightly
different ways of computing the matching score, but the basic idea is the same:
a phrase that matches the given n-gram tightly contributes more to the score
than a phrase that matches the n-gram loosely, and if two documents have the
same skip-gram frequency, the shorter document will receive a higher score.

An indexing service is needed for storage and matching, i.e., a service such
as Lemur [3], Terrier [4], Lucene [5] or ElasticSearch [2]. Any such platform can
be used for this purpose. For this study, we adopt the “Span Near Query”
scoring function implemented in the open source search engine ElasticSearch,
which matches the above criteria. For a given (n-gram g, slop s, document d)
triple,

score(g, s, d) =

√
skipGramFreq(g, s, d)

length(d)

where

skipGramFreq(g, s, d) =
s∑

k=0

phraseFreq(g, k, d)
length(g) + 1 + k

and phraseFreq(g, k, d) is the number of phrases in d generated by inserting
k extra words in the given n-gram. We further normalize score(g, s, d) to the
range [0,1].

2.2 Learning Algorithms and Regularization

After matching each skip-gram against the document collection, we obtain a
feature matrix which can be fed into most classification algorithms. We use reg-
ularized SVM with a linear kernel and regularized Logistic Regression (LR). Both
are linear models, thus fast to train and less likely to overfit high dimensional
data.

An Empirical Study of Skip-Gram Features and Regularization 77

Regularized SVM minimizes thesum of hinge loss and a penalty term [7].
Specifically, for L2-regularized SVM, the objective is

minw

∑N

i=1
(max(0, 1 − yiw

Txi))2 + λ
1
2
||w||22,

and for L1-regularized SVM, the objective is

minw

∑N

i=1
(max(0, 1 − yiw

Txi))2 + λ||w||1,

where λ controls the strength of the regularization2. We use the LibLinear pack-
age [7] for regularized SVM. Using both L1 and L2 terms to regularize SVM has
been proposed [22], but is not commonly seen in practice, possibly due to the
difficult learning procedure; hence we do not consider it in this study.

Regularized LR [12] minimizes the sum of logistic loss and some penalty
term. Specifically, for L2-regularized LR, the objective is

minw − 1
N

∑N

i=1
yiw

Txi + log(1 + ew
T xi) + λ

1
2
||w||22,

for L1-regularized LR, the objective is

minw − 1
N

∑N

i=1
yiw

Txi + log(1 + ew
T xi) + λ||w||1,

and for L1+L2-regularized LR, the objective is

minw − 1
N

∑N

i=1
yiw

Txi + log(1 + ew
T xi) + λα||w||1 + λ(1 − α)

1
2
||w||22.

In L1+L2 LR, the L1 ratio α controls the balance between L1 regularization
and L2 regularization. When α = 0, the model has only the L2 penalty term;
when α = 1, the model has only the L1 penalty term.

Unlike the case for SVM, LR with both L1 and L2 penalties is widely adopted,
possibly due to the efficient training and hyper-parameter tuning algorithms
available [10]. However, we find that the most popular package glmnet [9] for
L1+L2 LR does not scale well on our datasets which contain hundreds of thou-
sands of documents with millions of skip-gram features. Thus we make use of our
own Java implementation3, which has a special optimization for sparse matrix
representations and is more scalable than glmnet.

3 Experiments

Datasets and setup. To examine the effectiveness of skip-grams, we extract
skip-gram features from three large sentiment analysis datasets and train several
2 In the LibLinear package that we use, a different notation is used; there C = 1/λ.
3 Our code is publicly available at https://github.com/cheng-li/pyramid.

https://github.com/cheng-li/pyramid

78 C. Li et al.

machine learning algorithms on these extracted features. The datasets used are
IMDB, Amazon Baby, and Amazon Phone. IMDB [15] contains 50,000 labeled
movie reviews. Reviews with ratings from 1 to 4 are considered negative; and 7 to
10 are considered positive. Reviews with neutral ratings are ignored. The overall
label distribution is well balanced (25,000 positive and 25,000 negative). IMDB
comes with a predefined train/test split, which we adopt in our experiments.
There are also another 50,000 unlabeled reviews available for unsupervised train-
ing or semi-supervised training, which we do not use. Amazon Baby (containing
Amazon baby product reviews) and Amazon Phone (containing cell phone and
accessory reviews) are both subsets of a larger Amazon review collection [17].
Here we use them for binary sentiment analysis the same manner as in IMDB
dataset. By convention, reviews with rating 1–2 are considered negative and
4–5 are positive. The neutral ones are ignored. Amazon Baby contains 136,461
positive and 32,950 negative reviews. Amazon Phone contains 47,970 positive
and 22,241 negative reviews. Amazon Baby and Amazon Phone do not have a
predefined train/test partitioning. We perform stratified sampling to choose a
random 20 % of the data as the test set. All results reported below on these two
datasets are averaged across five runs.

For each dataset, we extract skip-gram features with max size n varying
from 1 (unigram) to 5 (5-gram) and max slop varying from 0 (no extra words
can be added) to 2 (maximal 2 words can be added). For example, when max
n=2 and max slop=1, we will consider unigrams, bigrams, and skip-bigrams
with slop=1. As a result, for each dataset, 13 different feature sets are created.
The combinations (max n=1, max slop=1) and (max n=1, max slop=2) are
essentially the same as (max n=1, max slop=0), and thus not considered. For
each feature set, we run five learning algorithms on it and measure the accuracies
on the test set. The algorithms considered are L1 SVM, L2 SVM, L1 LR, L2
LR and L1+L2 LR. In order to make the feature set the only varying factor,
we use fixed hyper parameters for all algorithms across all feature sets. The
hyper parameters are chosen by cross-validation on training sets with unigram
features. For L2 SVM, C = 1/λ = 0.0625; for L1 SVM, C = 1/λ = 0.25; for
LR, λ = 0.00001; and for L1+L2 LR, α = 0.1. Performing all experiments took
about five days using a cluster with six 2.80 GHz Xeon CPUs.

3.1 Main Results

Figure 1 shows how increasing max n and max slop of the skip-grams affects the
logistic regression performance on Amazon Baby. In each sub-figure, the bottom
line is the performance with standard n-gram (max slop=0) features. Along
each bottom line, moving from unigrams (max n=1) to bigrams (max n=2)
gives substantial improvement. Bigrams such as “not recommend” are effective
at capturing short distance negations, which cannot be captured by unigrams.

Moving beyond bigrams (max n=2) to higher order n-grams, we can see some
further improvement, but not as big as before. This observation is consistent with
the common practice in sentiment analysis, where trigrams are not commonly

An Empirical Study of Skip-Gram Features and Regularization 79

Fig. 1. Performance of LR on Amazon Baby with skip-gram features of varying sizes
and slops. Left to right learning algorithms: L2-LR, L1-LR, L1+L2-LR.

Table 1. The performance of our method on Amazon Baby. For each algorithm on each
feature set, the table shows its test accuracy and the number and fraction of features
selected. The accuracies which are significantly better (at 0.05 level under t-test) than
those by a corresponding slop 0 baseline are marked with *.

max n,

slop

L2 SVM L2 LR Features

used

L1 SVM Features

used

L1 LR Features

used

L1+L2

LR

Features

used

1, 0 92.38 92.18 8 × 103

(100%)

92.36 4 × 103

(49%)

91.63 2 × 103

(23%)

92.15 7 × 103

(88%)

2, 0 95.12 95.13 6 × 104

(100%)

94.89 8 × 103

(12%)

93.98 3 × 103

(5%)

95.07 3 × 104

(58%)

3, 0 95.51 95.55 1 × 105

(100%)

95.20 9 × 103

(6%)

94.32 4 × 103

(2%)

95.50 6 × 104

(45%)

4, 0 95.88 95.89 1 × 105

(100%)

95.59 9 × 103

(5%)

94.74 4 × 103

(2%)

95.88 7 × 104

(41%)

5, 0 95.93 95.94 1 × 105

(100%)

95.59 9 × 103

(5%)

94.76 4 × 103

(2%)

95.90 7 × 104

(40%)

2, 1 95.51* 95.50* 1 × 105

(100%)

95.22* 1 × 104

(6%)

94.43* 4 × 103

(2%)

95.50* 8 × 104

(45%)

3, 1 95.70* 95.72* 5 × 105

(100%)

95.36* 1 × 104

(2%)

94.51* 5 × 103

(1%)

95.72* 1 × 105

(25%)

4, 1 96.51* 96.54* 6 × 105

(100%)

96.19* 1 × 104

(1%)

95.48* 5 × 103

(<1%)

96.50* 1 × 105

(20%)

5, 1 96.56* 96.56* 6 × 105

(100%)

96.23* 1 × 104

(1%)

95.63* 5 × 103

(<1%)

96.54* 1 × 105

(19%)

2, 2 95.51* 95.53* 3 × 105

(100%)

95.19* 1 × 104

(3%)

94.48* 6 × 103

(1%)

95.54* 1 × 105

(32%)

3, 2 95.89* 95.86* 1 × 106

(100%)

95.41* 1 × 104

(1%)

94.70* 6 × 103

(<1%)

95.79* 1 × 105

(15%)

4, 2 96.85* 96.84* 1 × 106

(100%)

96.57* 1 × 104

(<1%)

96.08* 6 × 103

(<1%)

96.79* 1 × 105

(10%)

5, 2 96.87* 96.89* 1 × 106

(100%)

96.60* 1 × 104

(<1%)

96.20* 7 × 103

(<1%)

96.85* 1 × 105

(9%)

used compared with bigrams, and n-grams beyond trigrams are rarely used.
When we fix the max n and increase the max slop, we see the performance
further improves. For n ≥ 4, increasing max slop often brings more improvement
than increasing max n. Similar observations can be made for SVM and for the
other two datasets.

80 C. Li et al.

Table 2. The performance of our method on IMDB. For each algorithm on each feature
set, the table shows its test accuracy and the number and fraction of features selected.

max n,

slop

L2 SVM L2 LR Features

used

L1 SVM Features

used

L1 LR Features

used

L1+L2

LR

Features

used

1, 0 89.10 88.58 2 × 104

(100%)

88.81 2 × 103

(9%)

88.59 3 × 103

(12%)

88.71 1 × 104

(75%)

2, 0 90.81 90.63 1 × 105

(100%)

90.02 2 × 103

(1%)

89.80 3 × 103

(2%)

90.62 6 × 104

(40%)

3, 0 91.10 91.02 2 × 105

(100%)

90.13 2 × 103

(<1%)

89.84 3 × 103

(1%)

90.89 8 × 104

(28%)

4, 0 91.19 91.13 3 × 105

(100%)

90.19 2 × 103

(<1%)

89.85 3 × 103

(<1%)

90.97 9 × 104

(25%)

5, 0 91.21 91.16 4 × 105

(100%)

90.18 2 × 103

(<1%)

89.85 3 × 103

(<1%)

90.96 9 × 104

(24%)

2, 1 91.22 91.13 3 × 105

(100%)

90.24 3 × 103

(<1%)

90.01 3 × 103

(<1%)

90.94 9 × 104

(25%)

3, 1 91.46 91.44 9 × 105

(100%)

90.26 3 × 103

(<1%)

90.07 3 × 103

(<1%)

91.20 1 × 105

(13%)

4, 1 91.56 91.54 1 × 106

(100%)

90.37 3 × 103

(<1%)

90.11 3 × 103

(<1%)

91.22 1 × 105

(11%)

5, 1 91.65 91.64 1 × 106

(100%)

90.36 3 × 103

(<1%)

90.15 3 × 103

(<1%)

91.24 1 × 105

(10%)

2, 2 91.32 91.35 6 × 105

(100%)

90.37 2 × 103

(<1%)

90.07 4 × 103

(<1%)

90.96 1 × 105

(17%)

3, 2 91.65 91.60 2 × 106

(100%)

90.40 3 × 103

(<1%)

90.23 4 × 103

(<1%)

91.25 1 × 105

(7%)

4, 2 91.76 91.64 2 × 106

(100%)

90.43 3 × 103

(<1%)

90.26 4 × 103

(<1%)

91.23 1 × 105

(5%)

5, 2 91.71 91.63 3 × 106

(100%)

90.43 3 × 103

(<1%)

90.26 4 × 103

(<1%)

91.26 1 × 105

(5%)

Tables 1, 2, and 3 show more detailed results on these datasets. For each fixed
n, we use a paired t-test (0.05 level) to check whether increasing max slop from
0 to 1 or 2 leads to significant improvement. On Amazon Baby, all improvements
due to the increase of max slop are significant. On Amazon Phone, about half
are significant. The significance test is not done on the IMDB dataset since only
the predefined test set is used.

Tables 1, 2, and 3 also show how many features are selected by each learning
algorithm. L2 regularized algorithms do best in terms of accuracy but at the cost
of using all features. If that is acceptable in certain use cases, then L2 regulariza-
tion is recommended. On the other hand, L1 regularization can greatly reduce
the number of features used to below 1 %, sacrificing test accuracy by 1–2 %; if
this drop in performance is acceptable, then L1 regularization is recommended
for the extremely compact feature sets produced. Finally L1+L2 regularization
is a good middle choice for reducing the number of features to about 5–20 %
while at the same time maintaining test accuracy on par with L2 regularization.

An Empirical Study of Skip-Gram Features and Regularization 81

Table 3. The performance of our method on Amazon Phone. For each algorithm on
each feature set, the table shows its test accuracy and the number and fraction of
features selected. The accuracies which are significantly better (at 0.05 level under
t-test) than those by a corresponding slop 0 baseline are marked with *.

max n,

slop

L2 SVM L2 LR Features

used

L1 SVM Features

used

L1 LR Features

used

L1+L2

LR

Features

used

1, 0 89.45 89.27 5 × 103

(100%)

89.36 2 × 103

(45%)

89.33 2 × 103

(41%)

89.30 5 × 103

(96%)

2, 0 92.03 91.89 3 × 104

(100%)

91.82 5 × 103

(14%)

91.85 4 × 103

(13%)

91.94 2 × 104

(79%)

3, 0 92.24 92.11 6 × 104

(100%)

91.77 5 × 103

(8%)

91.92 5 × 103

(8%)

92.14 4 × 104

(70%)

4, 0 92.44 92.26 8 × 104

(100%)

91.94 5 × 103

(6%)

91.99 5 × 103

(6%)

92.32 5 × 104

(66%)

5, 0 92.29 92.19 8 × 104

(100%)

91.89 5 × 103

(6%)

92.01 5 × 103

(6%)

92.28 5 × 104

(65%)

2, 1 92.39 92.25 9 × 104

(100%)

92.19 6 × 103

(6%)

92.30* 6 × 103

(7%)

92.29 6 × 104

(65%)

3, 1 92.31 92.33 2 × 105

(100%)

92.09* 7 × 103

(3%)

92.27 8 × 103

(3%)

92.33* 9 × 104

(43%)

4, 1 92.31 92.43 2 × 105

(100%)

92.18 7 × 103

(2%)

92.28 8 × 103

(2%)

92.42 1 × 105

(38%)

5, 1 92.33 92.37 3 × 105

(100%)

92.15 7 × 103

(2%)

92.31* 8 × 103

(2%)

92.31 1 × 105

(36%)

2, 2 92.57* 92.67* 4 × 105

(100%)

92.13* 8 × 103

(1%)

92.32* 1 × 104

(2%)

92.53* 1 × 105

(28%)

3, 2 92.53 92.64* 4 × 105

(100%)

92.13 8 × 103

(1%)

92.37* 1 × 104

(2%)

92.55* 1 × 105

(28%)

4, 2 92.59 92.74* 6 × 105

(100%)

92.13 8 × 103

(1%)

92.30 1 × 104

(1%)

92.58* 1 × 105

(23%)

5, 2 92.54* 92.67* 7 × 105

(100%)

92.24* 8 × 103

(1%)

92.40* 1 × 104

(1%)

92.58* 1 × 105

(22%)

3.2 Comparisons with Other Methods

For the IMDB dataset, public results on the predefined test set are listed in
Table 4. Among the methods which only use labeled data, our method based
on skip-grams achieved the highest accuracy. Paragraph vectors (based on
word2vec) trained on both labeled data and unlabeled data achieve noticeably
higher performance. In fact, using one public paragraph vector implementa-
tion4, with only labeled data and a RBF SVM classifier5, we are able to produce
93.56 % accuracy on the given test set. However, the performance of paragraph
4 The paragraph vector implementation is from https://github.com/klb3713/

sentence2vec/. The parameters we use are size=400, alpha=0.025, window=10,
min count=5, sample=0, seed=1, min alpha=0.0001, sg=1, hs=1, negative=0,
cbow mean=0.

5 After producing paragraph vectors, we run LIBSVM (https://www.csie.ntu.edu.tw/
∼cjlin/libsvm/) with c=32, g=0.0078. An RBF kernel performs better than a linear
kernel.

https://github.com/klb3713/sentence2vec/
https://github.com/klb3713/sentence2vec/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/

82 C. Li et al.

Table 4. Our approach compared to other methods on the IMDB dataset.

Classifier Features Training documents Accuracy

LR with dropout
regularization [21]

bigrams 25,000 labeled 91.31

NBSVM [23] bigrams 25,000 labeled 91.22

SVM with L2
regularization

structural parse tree features
+ unigrams [16]

25,000 labeled 82.8

LR L1+L2
regularization

5-grams selected by
compressive feature
learning [20]

25,000 labeled 90.4

SVM word vectors trained by
WRRBM [6]

25,000 labeled 89.23

SVM word vectors [15] 25,000 labeled +
50,000 unlabeled

88.89

LR with dropout
regularization [21]

bigrams 25,000 labeled +
50,000 unlabeled

91.98

LR paragraph vectors [14] 25,000 labeled +
50,000 unlabeled

92.58

LR with L2
regularization

skip-grams 25,000 labeled 91.63

SVM with L2
regularization

skip-grams 25,000 labeled 91.71

LR with L1+L2
regularization

skip-grams 25,000 labeled 91.26

vectors seems quite sensitive to the specific training/testing partitioning. After
re-partitioning the data randomly (50 %–50 % as before), the accuracy of para-
graph vectors based on the same hyper-parameters dropped significantly to only
around 85 %. By contrast, our method consistently produces high results on both
the given test set and randomly sampled test set.

Amazon review datasets are often used differently by different researchers,
which makes the published results not directly comparable. Here we train para-
graph vectors on the same subset of documents and report the performance.6 On
Amazon Baby, paragraph vector gives 88.84 % while our method gives 96.85 %.
On Amazon Phone, paragraph vector gives 85.38 % while our method gives
92.58 %.

4 Analysis of Skip-Grams

When designing a feature set, the primary concern is often generalizability, since
good generalizability implies good prediction performance. In sentiment analysis

6 The training parameters are the same as in IMDB.

An Empirical Study of Skip-Gram Features and Regularization 83

data, people often express the same idea in many slightly different ways, which
makes the prediction task harder as the algorithm has to learn many expressions
with small variations. Skip-grams alleviate this problem by letting the algorithm
focus on the important terms in the phrase and tolerate small changes in unim-
portant terms. Thus skip-grams perform feature grouping on top of n-grams
without requiring any external domain knowledge. This not only improves gen-
eralizability but also interpretability. Several such skip-gram examples are shown
in Table 5. They are selected by an L1+L2 regularized logistic regression model
with high weights. For each skip-gram, we show its count in the entire collection
and several n-gram instances that it matches. For each matched n-gram, the
count in the collection is also listed in the table. We can see, for example, the
skip-gram “only problem” (slop=1) could match bigram “only problem” and
trigrams “only minor problem” and “only tiny problem”. Although the bigram
“only problem” is frequent enough in the collection, the trigram “only tiny prob-
lem” only occurs in four out of 169,411 reviews. It is hard for the algorithm to
treat the trigram “only tiny problem” confidently as a positive sentiment indi-
cator. After grouping all such n-gram variants into the same skip-gram, the
algorithm can assign a large positive weight to the skip-gram as a whole, thus
also handling the rare cases properly. This also provides more concise rules and
facilitates user interpretation.

4.1 Feature Utility

We analyze to what extent skip-gram features contribute to overall performance.
Take the Amazon Phone dataset as an example. The skip-gram features in it
can be broken down into different types based on n and slop values. The left
column of Fig. 2 shows, when max n = 3 and max slop=2, about 85 % of the
extracted skip-gram features have non-zero slops. In the middle column in Fig. 2,
we only focus on features selected by L1+L2 logistic regression and recheck
their count distribution. The fraction of unigrams increases, while the fraction of
slop=2 trigrams decreases. One can imagine that many noisy/irrelevant slop=2
skip-trigrams are eliminated by the L1 regularization, and unigrams are less
noisy. We further sum the logistic regression weights (absolute values, which
are comparable since all features are normalized) for features within each type
and display the results in the right column. The standard n-grams with slop=0
only contribute to 20 % of the total weight, and the remaining 80 % is due to
skip-grams with non-zero slops.

4.2 Feature Selection for Skip-Grams

Grouping similar n-grams into skip-grams not only produces generalizable fea-
tures but sometimes also noisy features. For example, in Table 5, “I have to
return”, “I have never had to return”, “I finally have to return” and “I do not
have to return” are all grouped into the skip-gram “I have to return” (slop=2).

84 C. Li et al.

Table 5. Examples of high weight skip-grams for LR.

Skipgram and count Matched ngrams and count

skip movie 42 skip this movie 28 skip this pointless movie 1

(slop 2) skip the movie 8 skipping all the movies 1

skip watching 1 of this sort

this movie

it fail (slop 1) 358 it fails 279 it completely fails 5

it even fails 5 it simply fails 3

whole thing 729 whole thing 682 whole horrific thing 1

(slop 1) whole damn thing 5

waste time 1562 waste time 109 waste of time 676

(slop 1) waste your time 4 waste more time 6

only problem 1481 only problem 1378 only tiny problem 4

(slop 1) only minor problem 11

never leak 1053 never leak 545 never a urine leak problem 1

(slop 2) never have leak 86 never have any leak 77

no smell (slop 1) 445 no smell 340 no medicine-like smell 1

no bad smell 13 no annoying smell 5

it easy to clean 314 it is easy to wipe clean and 3 it is easy to keep clean and 3

and (slop 2) it is so easy to clean and 16

I have to return 216 I have to return 151 I finally have to return 1

(slop 2) I have never had to return 1 I do not have to return 4

good service 209 good service 131 good price and service 1

(slop 2) good and fast service 2

This is the worst kind of noise because the gap matches negation words and dif-
ferent instances of the skip-gram have opposite sentiments. Detecting and mod-
eling the scope of negations is very challenging in general [24]. We do not deal
with negations at skip-gram generation time; at learning time, we rely on feature
selection to eliminate such noisy skip-grams. In this particular example, the noise
is relatively low as the mismatched n-grams “I have never had to return” and “I
do not have to return” are very rare in the document collection. Therefore logistic
regression still assigns a large weight to this skip-gram. Some other skip-grams are
more likely to include negations and are thus more noisy. For example, the skip-
gram “I recommend” (slop=2) can match many occurrences of both “I highly
recommend” and “I do not recommend”. Our feature selection mechanism infers
that this skip-gram does more harm than good and assigns a small weight to it. In
practice, we find the denoising effect of feature selection to be satisfactory. Most of
the classification mistakes are not caused by skip-gram mismatch but due to the
inability to identify the subjects of the sentiment expressions: many reviews com-
pare several movies/products and thus the algorithm gets confused as to which
subject the sentiment expression should apply. Resolving this issue requires other
NLP techniques and is beyond the scope of this study.

An Empirical Study of Skip-Gram Features and Regularization 85

Fig. 2. L1+L2 LR selected features for Amazon Phone feature contribution analy-
sis, max n =3. LEFT: feature count distribution in dataset; MIDDLE: feature count
distribution of selected features; RIGHT: feature LR-weighted-distribution of selected
features

From Tables 1, 2, and 3, it is very clear that L2 regularization achieves better
overall accuracy than L1 regularization. This seems counter-intuitive because L1
regularization completely eliminates noisy features while L2 regularization only
shrinks their weights. We believe there are two main reasons for this: First,
the document collections are relatively big. The bigger the dataset is, the more
parameters can be reliably estimated. L1 regularization is very successful at
“large p, small n” problems where the sample size is often in the hundreds
while the feature space could be in the millions. Our sentiment analysis datasets,
however, are much larger, and this fact makes it possible for L2 logistic regression
to estimate almost all parameters. In this case, assigning very low (not necessarily
exactly 0) weights to noisy features will suffice. Second, in the presence of many
highly correlated features, L1 regularization usually picks only one of them and
discards the rest. But the same opinion/sentiment is often expressed in many
different ways, which means L1 regularization’s instability in handling correlated
features can hurt the prediction performance.

But performance is not the only factor we care about. Having an L1 regu-
larization can produce smaller models, which makes the prediction faster and
the model more interpretable. L1+L2 regularization provides a good balance
between model compactness and prediction accuracy, since a relatively small
fraction of features is selected and the performance does not appreciably suf-
fer. In all three datasets, if we limit the number of features used to be under
1 × 105, then the best performance is always achieved by L1+L2 LR, trained on
skip-grams of maximum size 5 and slop 2.

5 Conclusion

We demonstrate that skip-grams can be used to improve large scale sentiment
analysis performance in a model-efficient and scalable manner via regularized
logistic regression. We show that although n-grams beyond trigrams are often
very specific and sparse, many similar n-grams can be grouped into a single
skip-gram which benefits both model-efficiency and classification performance.

86 C. Li et al.

To promote model-efficiency and prevent overfitting, we demonstrate the util-
ity of logistic regression incorporating both L1 regularization (for feature selec-
tion) and L2 regularization (for weight distribution). L2 regularized algorithms
do best in terms of accuracy but at the cost of using all features. L1 regulariza-
tion can greatly reduce the number of features used to below 1 %, sacrificing test
accuracy by 1–2 %. L1+L2 regularization is a good middle choice for reducing
the number of features significantly while maintaining good test accuracy.

Acknowledgments. The research is supported by NSF grant IIS-1421399.

References

1. http://nlp.stanford.edu/software/
2. https://lucene.apache.org/
3. http://www.lemurproject.org/
4. http://terrier.org/
5. http://www.elasticsearch.org/
6. Dahl, G.E., Adams, R.P., Larochelle, H.: Training restricted Boltzmann machines

on word observations. arXiv preprint (2012). arxiv:1202.5695
7. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: a library

for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)
8. Fernández, J., Gutiérrez, Y., Gómez, J.M., Martınez-Barco, P.: Gplsi: supervised

sentiment analysis in twitter using skipgrams. In: SemEval 2014, pp. 294–299
(2014)

9. Friedman, J., Hastie, T., Tibshirani, R.: glmnet: Lasso and elastic-net regularized
generalized linear models. R package version, 1 (2009)

10. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear
models via coordinate descent. J. Stat. Softw. 33(1), 1 (2010)

11. Guthrie, D., Allison, B., Liu, W., Guthrie, L., Wilks, Y.: A closer look at skip-gram
modelling. In: LREC-2006, pp. 1–4 (2006)

12. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, vol.
2. Springer, New York (2009)

13. König, A.C., Brill, E.: Reducing the human overhead in text categorization. In:
KDD, pp. 598–603. ACM (2006)

14. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
arXiv preprint (2014). arxiv:1405.4053

15. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: ACL 2011, pp. 142–150. Association for
Computational Linguistics (2011)

16. Massung, S., Zhai, C., Hockenmaier, J.: Structural parse tree features for text
representation. In: ICSC, pp. 9–16. IEEE (2013)

17. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rat-
ing dimensions with review text. In: Proceedings of the 7th ACM Conference on
Recommender Systems, pp. 165–172. ACM (2013)

18. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint (2013). arxiv:1301.3781

http://nlp.stanford.edu/software/
https://lucene.apache.org/
http://www.lemurproject.org/
http://terrier.org/
http://www.elasticsearch.org/
http://arxiv.org/abs/1202.5695
http://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1301.3781

An Empirical Study of Skip-Gram Features and Regularization 87

19. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using
machine learning techniques. In: Proceedings of the ACL-02 Conference on Empir-
ical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for
Computational Linguistics (2002)

20. Paskov, H.S., West, R., Mitchell, J.C., Hastie, T.: Compressive feature learning.
In: NIPS, pp. 2931–2939 (2013)

21. Wager, S., Wang, S., Liang, P.S.: Dropout training as adaptive regularization. In:
NIPS, pp. 351–359 (2013)

22. Wang, L., Zhu, J., Zou, H.: The doubly regularized support vector machine.
Statistica Sinica 16(2), 589 (2006)

23. Wang, S.I., Manning, C.D.: Baselines and bigrams: simple, good sentiment and
topic classification. In: Proceedings of the ACL, pp. 90–94 (2012)

24. Wiegand, M., Balahur, A., Roth, B., Klakow, D., Montoyo, A.: A survey on the
role of negation in sentiment analysis. In: Proceedings of the Workshop on Nega-
tion and Speculation in Natural Language Processing, pp. 60–68. Association for
Computational Linguistics (2010)

	An Empirical Study of Skip-Gram Features and Regularization for Learning on Sentiment Analysis
	1 Introduction
	1.1 Related Work

	2 Learning with Skip-Gram Features
	2.1 Skip-Gram Matching using ElasticSearch
	2.2 Learning Algorithms and Regularization

	3 Experiments
	3.1 Main Results
	3.2 Comparisons with Other Methods

	4 Analysis of Skip-Grams
	4.1 Feature Utility
	4.2 Feature Selection for Skip-Grams

	5 Conclusion
	References

