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Reduction Methods for Multi-label Classification

Abstract

Multi-label classification is an important machine learning task wherein one predicts

a set of labels to associate with a given object. For example, an article can belong to

multiple categories; an image can be associated with several tags; in medical billing,

a patient report is annotated with multiple diagnosis codes. The most commonly

used approach, called binary relevance (BR), trains one binary classifier to predict

each label separately. BR ignores label dependencies and often makes conflicting

predictions, such as tagging cat but not animal for an image. How to learn label

dependencies from data and train classifiers to account for such dependencies is the

central question in multi-label classification.

This thesis describes two new approaches to multi-label classification which

leverage label dependencies and achieve better classification accuracy than BR and

many other sophisticated methods. The first approach, called conditional Bernoulli

mixture (CBM), directly estimates the joint probability distribution among all labels

with a mixture model. CBM’s special model structure allows for efficient training,

joint inference and marginal inference procedures designed to optimize different

metrics.

The second approach, named BR-rerank, seeks to improve both BR’s confidence

estimation and prediction through post calibration and reranking procedures.

BR-rerank takes the BR predicted set of labels and its product score as features,

extracts more features from the prediction itself to capture label constraints, and

applies Gradient Boosted Trees (GB) as a calibrator to map these features into a

calibrated confidence score. The GB calibrator not only produces well-calibrated

scores (aligned with accuracy and sharp), but also models label interactions,

correcting a critical flaw in BR. Experiment results show that reranking label

sets by the new calibrated confidence makes accurate set predictions on par with

state-of-the-art multi-label classifiers—yet calibrated, simpler, and faster.

Both CBM and BR-rerank are reduction methods: they transform a complex

multi-label classification problem to a series of standard binary classification,

multi-class classification and regression problems, which are easier to solve.
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Chapter 1

Introduction

1.1 Multi-label Classification Problem

Many machine learning applications require solving the problem of identifying

which category (categories) a given instance belongs to. For example, in spam

detection, one decides whether an email is a spam email or not. In handwritten

digit recognition, one recognizes a handwritten digit as one of {0, 1, ..., 9}. In image

tagging, one finds all the relevant tags, such as dog, animal and person, to describe

objects in a given image.

All these problems are classification problems. In a classification problem,

there is a list of predefined candidate categories, and we need to choose the proper

category (categories) for the given instance. Depending on the number of candidate

categories provided and the number of categories one is allowed choose, classification

problems can be divided into three different types: binary classification, multi-class

classification and multi-label classification.

The simplest form of classification is binary classification, which chooses one of

the two given categories. For example, in spam detection, each email is an instance

to be classified, and the two possible categories are spam and not spam. Another

classical example of binary classification is to determine whether a given patient has

certain disease.

Many classification problems involve more than two candidate categories. For

example, handwritten digit recognition involves 10 possible categories {0, 1, 2, ..., 9}.
Such problems are formulated as multi-class classification which selects one category

out of multiple possible categories.

1



CHAPTER 1. INTRODUCTION

� airport

� animal

�� clouds

� book

�� lake

�� sunset

�� sky

� cars

�� water

�� reflection

� bear

� buildings

� castle

· · ·
Figure 1.1: A tagged image from the NUSWIDE dataset [25]. Tags associated

with this image = {clouds, lake, sunset, sky, water, reflection}. All

candidate tags in the NUSWIDE dataset = {airport, animal, beach, bear,

birds, boats, book, bridge, buildings, cars, castle, cat, cityscape,

clouds, computer, coral, cow, dancing, dog, earthquake, elk, fire,

fish, flags, flowers, food, fox, frost, garden, glacier, grass,

harbor, horses, house, lake, leaf, map, military, moon, mountain,

nighttime, ocean, person, plane, plants, police, protest, railroad,

rainbow, reflection, road, rocks, running, sand, sign, sky, snow,

soccer, sports, statue, street, sun, sunset, surf, swimmers, tattoo,

temple, tiger, tower, town, toy, train, tree, valley, vehicle, water,

waterfall, wedding, whales, window, zebra}.

There are also problems which not only define multiple candidate categories,

but also allow each instance to be associated to multiple categories at the same time.

For example, an image can contain multiple objects and can have multiple tags. The

image shown in Figure 1.1 is tagged with clouds, lake, sunset, sky, water,

reflection. These tags are a subset of the 81 candidate tags defined in NUSWIDE

image tagging dataset [25]. Similarly, a movie can belong to multiple genres. The

movie “Harry Potter and the Sorcerer’s Stone” appears under the genres Adventure,

Family, and Fantasy on the IMDB website, among the 28 different genres defined by

IMDB (see Figure 1.2). Such classification tasks are called multi-label classification,

which associates a given instance to multiple categories, chosen from the list of

candidate categories. Generally speaking, there is no restriction on how many

2
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� Drama

� Comedy

�� Adventure

� Romance

� Thriller

� Crime

�� Family

� Documentary

� Talk-Show

� Sci-Show

�� Fantasy

� Western

· · ·

Figure 1.2: A screenshot of the IMDB webpage for the movie “Harry Potter and the

Sorcerer’s Stone”. Genre tags associated with this movie = {Adventure, Family,

Fantasy}. All genre tags available on IMDB = {Drama, Comedy, Romance,

Thriller, Crime, Action, Horror, Adventure, Documentary, Mystery,

Sci-Fi, Fantasy, Family, Biography, War, Animation, History, Music,

Musical, Western, Short, Sport, Film-Noir, News, Adult, Talk-Show,

Game-Show, Reality-TV}. From https://www.imdb.com/title/tt0241527/.

Screenshot by author.

categories an instance can match. An instance can potentially match none of the

given categories or all of them (although this is rare in practice). Besides image

tagging and movie genre classification, multi-label classification also has many

other applications, such as Reuters news categorization, ICD/CPT medical billing,

Youtube video tagging, and patent classification (Figure 1.3).

Conceptually, multi-class classification is a generalization of binary classification.

Multi-label classification is a further generalization of multi-class classification.

Table 1.1 summarizes these three types of classifications.

Table 1.1: Binary vs. multi-class vs. multi-label classifications.

task description

binary classification choose 1 label out of 2 candidate classes

multi-class classification choose 1 label out of many candidate classes

multi-label classification choose many labels out of many candidate classes

3



CHAPTER 1. INTRODUCTION

Multi-label
Classification

IMDB
movie

genre clas-
sification

Patent clas-
sification

Youtube
video

tagging

ICD/CPT
medical
billing

Flickr
image
tagging

Reuters
news cate-
gorization

Figure 1.3: Applications of multi-label classification.

Formally, in a classification problem, we are given a finite list of predefined

categories (or class or tags or labels) L. These categories are typically encoded as

integers L = {1, 2, ..., L}. The number of candidate categories |L| is 2 for binary

classification, and could be bigger than 2 for multi-class classification and multi-label

classification. Each input instance is represented as a D dimensional feature vector

x = (x1, x2, ..., xD) ∈ RD, with each dimension measuring certain aspect of the

instance. In binary and multi-class classification, we aim to build a classifier h that

maps each x to a single category y ∈ L. In multi-label classification, we aim to

build a classifier h that maps each x to a set of categories y ⊂ L. The classification

output can also be written as a binary vector with each bit indicating the presence

or absence of the corresponding label. For binary and multi-class classification, only

one bit will be 1 and all other bits will be 0, and such a binary vector is sometimes

called a one-hot encoding vector. For multi-label classification, multiple bits could be

1. For example, in a multi-class classification problem with 10 candidate categories,

if the third category is assigned to an instance, then the output can be written as

y = 3 or y = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0). In a multi-label classification problem with 10

candidate categories, if the first, the third, and the eighth labels are assigned to an

4
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instance, the output can be written as y = {1, 3, 8} or y = (1, 0, 1, 0, 0, 0, 0, 1, 0, 0).

Sometimes it is more convenient to work with the integer notation and sometimes

it is more convenient to work with the binary vector notation. In this thesis, we

will switch between these two notations and use whichever more convenient in the

context.

This thesis focuses on multi-label classification, which has many important

applications and unique algorithmic challenges, as we shall describe in the next

section.

1.2 Challenges in Multi-label Classification

Compared to binary and multi-class problems, multi-label problems have some

unique challenges. As a specific motivating example, consider the problem of

medical billing and reporting where all patient symptoms, diagnoses, and procedures

recorded in conjunction with hospital care are encoded with a set of CPT codes (for

procedures) and a set of ICD codes (for symptoms and diagnoses).1 The use of such

codes is mandated for medical reporting and billing in the US and beyond. From the

standpoint of multi-label prediction, the size of these code sets is extremely large and

growing; for example, there are over 69,000 ICD-10 diagnosis codes in current use as

compared to about 14,000 such codes in ICD-9. Most hospitals employ dedicated

human medical coders to parse medical records manually and assign codes. Human

annotation is inherently prone to error, and this is especially true when confronted

with tens-of-thousands of potential codes. It is reported that nearly 50% of the

manually billed medical records have some coding error (especially missing codes),

and this high error rate has caused a 26% increase of total cost for patients and

health care providers [1]. Developing an automated medical billing and reporting

system to make these processes more efficient and accurate has immediate benefit

for the whole society. From a machine learning point of view, the task is to build a

multi-label classifier in order to predict the diagnosis/procedure codes for a patient

visit, given the visit notes and certain attributes like the provider, care facility and

patient’s general information.

We have observed several challenges and requirements in building such a

multi-label classification system for medical billing and reporting during our

collaborating with Partners Healthcare and Massachusetts General Hospital, and

1CPT stands for “Current Procedural Terminology” and ICD stands for “International Classifi-

cation of Diseases”.

5



CHAPTER 1. INTRODUCTION

most of these challenges and requirements also arise in other multi-label classification

tasks, such as Flickr image tagging, Wikipedia categorization and YouTube video

classification.

Label dependencies. There are constraints among codes. For example, in medical

coding, the codes M25.562 (“Pain in left knee”) and M25.569 (“Pain in unspecified

knee”) should not be used together. In image tagging, an imaged tagged with cat

should also be tagged with animal. One major challenge in multi-label classification

is that predicting each label independently (called binary relevance (BR) [107]) does

not work well. Certain labels are hard to predict directly; also individual label

predictions can often be conflicting. It is known that exploiting label dependencies

improves the overall performance [32], and most of the progress in multi-label

classification accounts for label dependencies. In the absence of any prior information

about label relations (domain knowledge, ontology, etc.) the challenge is to learn the

label dependencies from data while optimally training classifiers to account for such

dependencies, a daunting task if the label set is large enough so that the possible

label subsets are in the millions or billions or even larger.

Large scale data. Datasets with large numbers of instances/features/labels are

becoming increasingly common. Many of the research datasets have hundreds of

labels and hundreds of thousands of instances. The data that industrial companies

are dealing with are even larger: The Open Image dataset from Google [2] contains

9 million images and 5,000 labels. The YouTube-8M dataset [3] contains 8 million

videos, 1024 frame level features, 1,152 video level features, and 4,716 labels. The

WikiLSHTC-325K dataset [4] contains 2 million Wikipedia pages, 1,617,899 unigram

features and 325,056 labels. How to train a multi-label classifier efficiently on large

scale data while capturing label dependencies is a challenge. For example, the

pair-wise CRF model [44] considers pair-wise label interactions and has a complexity

quadratic in number of labels. Such methods may have difficulties scaling to large

datasets with many labels. Also, storing the trained models may take a lot of disk

space. Techniques that compress model structure without losing accuracy are very

useful.

Inference under task metric. Different multi-label applications often require

different forms of predictions and employ different evaluation metrics. Commonly

used evaluation metrics include subset accuracy, F1 score, Jaccard index, Hamming

loss, Mean Average Precision and NDCG. The theoretical results in [32, 61] show

that a multi-label classifier designed for optimizing one measure may be suboptimal

under other measures. How to achieve the optimal inference under Hamming loss,

subset accuracy, instance/micro/macro averaged F1 has been studied in [32, 61]. It

is shown that the optimal inference for the subset accuracy measure and the instance
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averaged F1 measure requires the classifier to maintain a joint probability estimation

among all labels; the optimal inference for Hamming loss and micro/macro averaged

F1 requires the classifier to provide marginal label probability estimations. To

support all these inference procedures, a multi-label model should be versatile. The

classifier model should have some carefully designed structure that allows for efficient

joint and marginal inferences.

Calibrated confidence. The ability to produce a calibrated confidence associated

with the prediction is a natural requirement in many industrial applications, but is

often overlooked by algorithm designers in academia since it does not necessarily

affect raw testing performance. The confidence indicates the likelihood of the

prediction y being correct. It is called “calibrated” if the confidence aligns with the

empirical accuracy: for all the predictions with confidence around, say, 60%, roughly

60% of them should be correct. In medical billing, each medical note is tagged with

multiple billing codes and these billing codes are sent off to insurance company. The

hospital annotation must reach a required accuracy, say, 90% to prevent additional

checks or lawsuits from the insurer. A multi-label classifier may only have 70%

accuracy on this task so it cannot alone send predicted billing codes. But the

classifier is still quite helpful if its reported confidence with each prediction is well

calibrated: send off automatically the prediction with confidence greater than 90%,

and ask for human intervention on lower-confidence predictions. This work-flow can

significantly reduce billing annotation costs, but only works well if the confidence is

calibrated. Note that the confidence score is defined for the whole predicted label

set y, as opposed to individual labels y1, y2, ..., yL. Because operationally, asking a

human medical expert to verify one label takes roughly the same time as verifying

a set of labels (it is reading the medical document that takes most time). So there

is a natural incentive to automate the entire set prediction if it is confident enough,

rather than some individual label predictions.

Label noise. Another difficulty is that multi-label data often exhibits high levels of

noise [86, 78, 16, 125, 131]. Most of the data we work with (such as patient records)

are annotated by humans, so mistakes are inevitable. There are typically hundreds

or thousands of candidate labels and the number of relevant labels for an instance is

unknown, thus it is hard for human annotators to go through the list and identify

all relevant labels. Minor mistakes in a multi-label setup are more likely than in a

multi-class setup where each data object has precisely one label. This labeling noise

poses significant challenges for multi-label training and confidence calibration.

A successful multi-label classification system should deal with all the above

mentioned challenges. Such a system should: (1) respect the dependencies among the

labels; (2) trains efficiently on large scale data; (3) make various forms of predictions
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depending on the task metric and scenario; (4) robust to the noise in annotations;

(5) have some well calibrated confidence scores associated the predictions.

1.3 Related Work

There are many existing works on multi-label classification. In this section, we

review some representitive ones and we divide them into three topics: 1) how to

design the classifier structure to capture label dependencies; 2) how to deal with

large scale data; 3) how to deal with label noise.

1.3.1 Label Dependencies and Classifier Design

It is known that exploiting label dependencies improves the overall performance [32],

and most of the progress in multi-label classification accounts for label dependencies.

Here we review a few representative approaches, and discuss their advantages and

disadvantages.

Binary Relevance. The simplest approach is to apply one binary classifier (e.g.,

binary logistic regression or support vector machine) to predict each label separately.

This approach is called binary relevance (BR) [107] and is widely used due to

its simplicity and speed. BR’s training time grows linearly with the number of

labels, which is considerably lower than many methods that seek to model label

dependencies, and this makes BR run reasonably fast on commonly used datasets.

(Admittedly, BR may still fail to scale to datasets with extremely large number of

labels, in which case specially designed multi-label classifiers with sub-linear time

complexity should be employed instead. But in this thesis, we shall not consider

such extreme multi-label classification problem.)

BR has two well-known drawbacks. First, BR neglects label dependencies and

this often leads to prediction errors: some BR predictions are incomplete, such

as tagging cat but not animal for an image, and some are conflicting, such as

predicting both the code Pain in left knee and the code Pain in unspecified

knee for a medical note. Second, the confidence score or probability (we shall use

“confidence score” and “probability” interchangeably) BR associates to its overall

set prediction y is often misleading, or uncalibrated. BR computes the overall set

prediction confidence score as the product of the individual label confidence scores,

i.e., p(y|x) = ∏L
l=1 p(yl|x). This overall confidence score often does not reflect reality:

among all the set predictions on which BR claims to have roughly 80% confidence,
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maybe only 60% of them are actually correct (a predicted set is considered “correct”

if it matches the ground truth set exactly). Having such uncalibrated prediction

confidence makes it hard to integrate BR directly into a decision making pipeline

where not only the predictions but also the confidence scores are used in downstream

tasks.

Power-Set. At the other extreme is the Power-Set (PowSet) approach [107],

which treats each label subset as a class, and trains a multi-class classifier. As a

consequence, one would be restricted in practice to predicting only label subsets

seen in the training data and always assigning zero probabilities to unseen subsets;

even for many of the subsets observed there would likely be a scarcity of training

data. Power-Set is handling label dependencies and its predictions are coherent, but

the method is often infeasible on the exponential number of label sets. The Random

k-label-sets (RAKEL) [108] is proposed to reduce the computational cost associated

with Power-Set method. It trains K multi-class classifiers, each on a random subset

of labels and uses all K models to make the final predictions.

Classifier Chains. Classifier Chains (CC) [97] decomposes the joint probability

p(y|x) into a product of conditionals p(y1|x)p(y2|x, y1) · · · p(yL|x, y1, .., yL−1), based
on the chain rule. This reduces a multi-label learning problem to L binary learning

problems, each of which learns a new label given all previous labels. During

prediction, finding the exact joint mode is intractable. Classifier Chains classify

labels greedily in a sequence: label y� is decided by maximizing p(y�|x, y1, .., y�−1),
and becomes a feature to be used in the prediction for label y�+1. This greedy

prediction procedure has several issues: 1) the chain order must be decided in

advance, 2) the predicted subset can be far away from the joint mode [33]; 3) errors

in early label predictions propagate to subsequent label predictions; 4) the overall

prediction depends on the chain order. To address the first two issues, Probabilistic

Classifier Chains (PCC) replace the greedy search strategy with some more accurate

search strategies, such as exhaustive search [24], ε-approximate search [34], Beam

Search [64, 65], or A* search [77]. To address the last issue, Ensemble of Classifier

Chains (ECC) [97] averages several predictions made by different chains, wherein

the averaging can take place at either the individual label level (ECC-label) or the

label subset level (ECC-subset). Using dynamic programming to find the optimal

chain order [73] has been proposed recently.

Conditional Dependency Network. A similar reduction method named

Conditional Dependency Networks (CDN) estimates p(y|x) based on full

conditionals and Gibbs sampling [50]. During learning, one binary classifier is

trained for each full conditional p(y�|x, y1, .., y�−1, y�+1, ..., yL). During prediction,

Gibbs sampling is used to find the mode of the joint. The method’s major limitation
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specifically to capture exclusive or hierarchical label relations [35]; this works only

when label dependencies are strict and a priori known.

Stacking methods. Stacking methods perform predictions in two stages. The

first stage generates some initial estimations and the second stage combines these

estimations and produces a final prediction. Two most well-known stacking methods

in the literature are called 2BR [47, 106] and DBR [80]. The stage-1 models in

2BR and DBR are standard BR models. The stage-2 models in 2BR and DBR

work differently. In 2BR, the stage-2 model predicts each label � with a separate

binary classifier which takes as input the original instance feature vector x as well

as all label probabilities predicted by the stage-1 model. In DBR, the stage-2 model

predicts each label � with a separate binary classifier which takes as input the

original instance feature vector x as well as the binary absence/presence information

of all other labels. The absence/presence of label � itself is not part of the input to

avoid learning a trivial mapping. During training, the absence/presence information

is obtained from the ground truth; during prediction, it is obtained from the stage-1

model’s prediction. Clearly for DBR there is some inconsistency on how stage-2

inputs are obtained. 2BR does not suffer from such inconsistency. However, both

2BR and DBR have a critical flaw: when their stage-2 models make the final

decision for a particular label, they do not really take into account the final decisions

made for other labels by the stage-2 model; they instead only consider the initial

estimations on other labels made by the stage-1 model, which can be quite different.

As a result, the final set predictions made by 2BR and DBR may not respect the

label dependencies/constraints these models have learned.

Neural Networks. Several popular deep neural networks have been applied to

multi-label prediction. Examples include recurrent neural network (RNN) [115],

convolutional neural networks [71] and auto-encoders [113]. Because RNN is original

designed for sequence prediction task, one has to transform sets to sequences during

training and transform sequences to sets during prediction. The order in which

labels appear in a sequence has an impact on model performance [82, 95].

The Structured Prediction Energy Network (SPEN) [15] uses deep neural

networks to efficiently encode arbitrary relations between labels, which to large

degree avoids parameterization issue associated with pair-wise CRF, but it cannot

generate a confidence score for its MAP prediction as computing the normalization

constant is intractable.

Deep value network (DVN) [52] trains a neural network to evaluate prediction

candidates and then uses back-propagation to find the prediction that leads to the

maximum score.
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Other models. There are many other approaches that seek to model label

dependencies in different ways [88, 53, 23, 132, 121, 31, 19]. For example, the

probabilistic classifier tree method [31] is designed to estimate the joint probability

p(y|x) by following a path from the root to a leaf node in a tree hierarchy

using the chain rule. It reduces the training and prediction problem into many

simple subproblems and has lower training complexity compared to BR. The

Constraint-and-Predict method (CP) [19] is proposed to specifically incorporate

cardinality constraint into learning and prediction. Several approaches adapt existing

machine learning models, such as Bayesian network [129], and determinantal point

process [119]. The survey [45] covers many other methods.

1.3.2 Learning on Large Scale Data

One way to scale up model training is to exploit the sparsity in the feature matrix

or the label matrix. The PDsparse method [124] employs a primal and dual sparse

approach to train BR. It reports a compression ratio of 1000 in the model size

using elastic-net regularization. DiSMEC [14] trains BR in a distributed fashion.

However, these methods do not capture any model dependencies. There are two

main families of algorithms that estimate label dependencies and simultaneously

achieve sub-linear training time: embedding methods and tree based methods.

Embedding methods [17, 27] assume some low rank structure of the label matrix and

find a low dimensional embedding of the labels. One scoring function is trained for

each dimension in the embedding space. However, the low rank assumption is often

violated in real data due to the long tail of labels [120]. Tree based methods [93, 57]

partition both the feature space and the label space repeatedly.

1.3.3 Dealing with Label Noise

Existing approaches that tackle label noise make different assumptions about noise:

[125, 118, 117] assume that the human annotation has three possibilities: “positive”,

“negative” and “missing”. In this setup, the “positive” and “negative” annotations

are noise free, and the “missing” label annotation can be either positive or negative.

Note that the annotator needs to explicitly indicate that he/she forgets to judge

those “missing” labels. Methods designed for this setup have only been tested on

artificial data and seem to have only theoretical interests, as in practice, datasets are

rarely labeled this way. In almost all the real multi-label datasets, each instance is

only labeled with some “positive” labels. The rest of the labels that were not added

to the instance may contain the labels that truly do not apply as well as the labels
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that should apply but were missed by the annotators. Sometimes even those marked

as “positive” could be unreliable. In this realistic setup, the learning algorithms do

not know a priori which annotations are reliable and which are not and have to

detect incorrect annotations on the fly. Admittedly, learning in this setup is very

difficult. Using dedicated model structure to model noise or using robust training

objectives typically has noticeable but limited performance improvement [78]. On

some multi-label tasks, the noise can be assumed to be one sided — that annotators

are not malicious; the “positive” labels they put are in general correct, but they

could miss some positive labels. This additional assumption simplifies learning,

and many such algorithms have been developed, under the general name of “PU”

learning [57, 59]. The PfastXML method [57] assumes that the missing rate of

each label can be obtained from an external source. Some methods specifically deal

with image annotation noise [38, 70]. Recently, researchers have observed several

difficulties and limitations of training robust classifiers purely on noisy annotations

and start to explore the possibility of leveraging an additional set of noise-free

data [110, 111, 55].

1.4 Summary of Contributions

This thesis considers the problem of multi-label classification and introduces two new

classification methods named conditional Bernoulli mixture (CBM) and BR-rerank.

Both methods seek to improve multi-label classification accuracy by leveraging

label dependencies, and they tackle the challenge of label dependency estimation

by reducing a multi-label classification problem to simpler binary classification,

multi-class classification, or regression problems. Our contributions are as follows:

• We introduce a new multi-label model, named conditional Bernoulli mixture

(CBM) model, which directly approximates the conditional joint label

probability by a mixture of binary relevance models. CBM reduces a complex

multi-label classification problem into a multi-class classification problem and

a series of binary classification problems, each of which is easier to solve.

• We derive an Expectation-Maximization (EM) based training procedure

for CBM, and show that the training procedure has a modular design and

can easily incorporate existing binary and multi-class base learners training

procedures as subroutines. We also develop tricks to speed up CBM training

by leveraging the sparsity in the model structure as well as in the data.
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• We develop three different prediction methods that aim to optimize different

evaluation metrics: set accuracy, Hamming loss and F1 score. To optimize set

accuracy, we develop a dynamic programming procedure to efficiently find the

most probable label set.

• We introduce another new multi-label method, named BR-rerank, which

employs a post-calibration and reranking procedure to improve the prediction

accuracy and prediction confidence of the widely used binary relevance model.

BR-rerank captures label dependencies in the post-processing step and reduces

a complex multi-label classification problem into a regression problem and a

series of binary classification problems, each of which is easier to solve.

• We identify several features that are critical in multi-label prediction confidence

calibration and propose to use gradient boosting as the calibrator due to its

effectiveness in modeling feature and label interactions.

• We develop a new way to train calibrator in the presence of label noise which

gives unbiased estimation of the calibration confidence.

• Our analysis shows that both CBM and BR-rerank avoid many issues

associated with existing multi-label methods. Experimental results also show

the effectiveness of the proposed methods against competitive alternatives on

benchmark datasets.

• We implement the proposed method CBM and BR-rerank together with many

baseline methods such as BR, PCC, CRF, DBR and make the implementations

publicly available at https://github.com/cheng-li/pyramid.

The work in this thesis is a revised and extended presentation of research

developed through several co-authored papers. Chapter 3 is based on a paper in

ICML 2016 [68] and a paper in ICMLA 2018 [114]. Chapter 4 is based on a paper in

ECML-PKDD 2019 [67].
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Chapter 2

Foundations

In this chapter, we describe some basic concepts, theories and algorithms which will

be used in later chapters.

2.1 Evaluation Metrics for Multi-label Classifica-

tion

One distinct feature of multi-label classification is that there are many different

evaluation metrics. In this section, we describe several commonly used metrics.

Let {(xn,yn)}Nn=1 be a multi-label dataset with N instances and L candidate

labels. The n-th instance has feature vector xn and ground truth labels yn. Suppose

ŷn is the set prediction made for the n-th instance by some classifier. Then we have

the following categorization for each binary label prediction result made for each

instance:

cnl =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tp, if ŷnl = 1, ynl = 1

fp, if ŷnl = 1, ynl = 0

tn, if ŷnl = 0, ynl = 0

fn, if ŷnl = 0, ynl = 1

(2.1)

where tp, fp, tn, fn stand for true-positive, false-positive, true-negative, and

false-negative predictions, respectively.

One can summarize the prediction results by defining three N -by-L matrices

Y, Ŷ and C. In all three matrices, each row corresponds to an instance, and
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each column corresponds to a label. Y is the ground-truth matrix, and each entry

ynl ∈ {0, 1} indicates whether the l-th label is truly relevant for the n-th instance.

Ŷ is the prediction matrix, and each entry ŷnl ∈ {0, 1} indicates whether the l-th

label is predicted for the n-th instance. C is the correctness matrix, and each entry

cnl ∈ {tp, fp, tn, fn} indicates whether the decision made for the n-th instance w.r.t.

the l-th label is correct. For example, these matrices defined for 5 instances and 4

labels may look like the following:

Y =

⎡
⎢⎢⎢⎢⎢⎣
1 0 1 1

0 1 0 1

0 0 0 0

1 1 1 1

1 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ , Ŷ =

⎡
⎢⎢⎢⎢⎢⎣
1 1 1 0

0 1 1 0

1 0 0 0

0 1 1 1

1 0 1 0

⎤
⎥⎥⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎢⎢⎣
tp fp tp fn

tn tp fp fn

fp tn tn tn

fn tp tp tp

tp tn tp tn

⎤
⎥⎥⎥⎥⎥⎦

There are many different evaluation metrics for multi-label classification. Most

of them are computed based solely on the C matrix. Depending on how the statistics

are aggregated during the computation, those metrics can be categorized into

instance-averaged, label-averaged (also called macro-averaged) and micro-averaged

metrics [61].

There are also metrics defined not in terms of entries in the C matrix. Examples

include instance-averaged (or label-averaged) precision at K, instance-averaged

(or label averaged) NDCG. These are ranking based metrics, which require the

underlying multi-label classifier to provide a ranking of instances (or labels) according

to their relevance w.r.t. a label (or instance). In this thesis, we will focus on metrics

defined by the C matrix.

2.1.1 Instance-Averaged Metrics

An instance-averaged metrics first computes a performance score for each instance

(each row in the C matrix), and then averages scores across all instances. It measures

the expected classification performance of a randomly picked instance.

First we define the total number of tp, fp, tn, fn entries in the n-th row of the
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C matrix as TPn, FPn, TNn, FNn, respectively.

TPn =
L∑
l=1

I[cnl = tp] (2.2)

FPn =
L∑
l=1

I[cnl = fp] (2.3)

TNn =
L∑
l=1

I[cnl = tn] (2.4)

FNn =
L∑
l=1

I[cnl = fn] (2.5)

where I[·] is the indicator function. We then define the following instance-averaged

metrics:

• instance-averaged precision:

1

N

N∑
n=1

TPn

TPn + FPn

(2.6)

It measures, on average for each instance, what fraction of the predicted labels

are correct.

• instance-averaged recall:

1

N

N∑
n=1

TPn

TPn + FNn

(2.7)

It measures, on average for each instance, what fraction of the relevant labels

are correctly predicted.

• instance-averaged F1:

1

N

N∑
n=1

2TPn

2TPn + FPn + FNn

(2.8)

The F1 score defined for each instance 2TPn

2TPn+FPn+FNn
is the harmonic mean

of precision TPn

TPn+FPn
and recall TPn

TPn+FNn
. Instance-averaged F1 can also be

written as

1

N

N∑
n=1

2|yn ∩ ŷn|
|yn|+ |ŷn| (2.9)
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where yn and ŷn are treated as set of labels, ∩ is the intersection operator, and

| · | standards for the cardinality (size) of the set. Note that for each instance,

its F1 score achieves the maximum value of 1 when the predicted set equals

the ground truth set, and the minimum value of 0 when none of the predicted

labels are in the ground truth set. F1 score lies between 0 and 1 when the

predicted set is partially correct.

• instance-averaged Jaccard index:

1

N

N∑
n=1

TPn

TPn + FPn + FNn

(2.10)

Jaccard index can also be written as

1

N

N∑
n=1

|yn ∩ ŷn|
|yn ∪ ŷn| (2.11)

where yn and ŷn are treated as set of labels, and ∪ is the union operator.

Jaccard index is quite similar to F1 score in the sense that they both measure

the degree of overlap between the predicted set and the ground truth set.

• instance-averaged Hamming loss:

1

N

N∑
n=1

FPn + FNn

L
(2.12)

It looks at all the binary decisions made on all labels, and calculates what

fraction of binary decisions are incorrect.

• subset accuracy (also called set accuracy):

1

N

N∑
n=1

I[FPn + FNn = 0] (2.13)

It counts the fraction of instances with perfect predictions. This is the most

stringent metric – partially correct set predictions do not receive any credit. It

can also be written as

1

N

N∑
n=1

I[yn = ŷn] (2.14)

In the literature, 1 minus subset accuracy is referred to as 0/1 loss.
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2.1.2 Label-Averaged Metrics

A label-averaged (macro averaged) metrics first computes a performance score for

each label (each column in the C matrix), and then averages scores across all labels.

It measures the expected classification performance of a randomly picked label.

The definitions of label-averaged metrics are symmetric to the definitions of

instance-averaged metrics. First we define the total number of tp, fp, tn, fn entries

in the l-th column of the C matrix as TPl, FPl, TNl, FNl, respectively.

TPl =
N∑

n=1

I[cnl = tp] (2.15)

FPl =
N∑

n=1

I[cnl = fp] (2.16)

TNl =
N∑

n=1

I[cnl = tn] (2.17)

FNl =
N∑

n=1

I[cnl = fn] (2.18)

We then define the following label-averaged metrics:

• label-averaged precision:

1

L

L∑
l=1

TPl

TPl + FPl

(2.19)

It measures the precision of each binary label classifier (what fraction of

instanced predicted to have this label truly have this label), and averages

across all labels.

• label-averaged recall:

1

L

L∑
l=1

TPl

TPl + FNl

(2.20)

It measures the recall of each binary label classifier (what fraction of instances

with this label are predicted to have this label), and averages across all labels.

• label-averaged F1:

1

L

L∑
l=1

2TPl

2TPl + FPl + FNl

(2.21)
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The F1 score defined for each label 2TPl

2TPl+FPl+FNl
is the harmonic mean of

precision TPl

TPl+FPl
and recall TPl

TPl+FNl
.

• label-averaged Jaccard index:

1

L

L∑
l=1

TPl

TPl + FPl + FNl

(2.22)

• label-averaged Hamming loss:

1

L

L∑
l=1

FPl + FNl

N
(2.23)

This is the same as instance-averaged Hamming loss.

Note that label-averaged metrics implicitly assume that all labels are equally

important, which is often not true in practice, as some labels are far more popular

than others. Label-averaged metrics often suffer from two issues: long tail and

instability. 1) The long tail issue: Most of the real-world multi-label datasets exhibit

a long tail: there are often a few popular labels with many matched instances, and

a large number of rare labels with few matched instances. Those few popular labels

could occur more often than all rare labels combined. But because of the sheer

number of rare labels, label-averaged metrics are dominated by the performance on

rare labels. 2) The instability issue: many rare labels only appear a few times in the

test set, some only appear once, and some do not appear at all. This sparsity makes

metrics defined on rare labels unstable to compute. Consider a rare label that only

appears once in the test set. The classifier’s recall on this label is either 1 (if the

classifier finds this single occurrence) or 0 (if the classifier misses it).

2.1.3 Micro-Averaged Metrics

A micro-averaged metrics first aggregates tp, fp, tn, fn from all entries of the C

matrix, and then defines a performance score using these 4 aggregated numbers. It

measures the expected classification performance of a randomly picked instance-label

pair.

First we define the total number of tp, fp, tn, fn entries in the entire C matrix

20



CHAPTER 2. FOUNDATIONS

as TP, FP, TN, FN, respectively.

TP =
N∑

n=1

L∑
l=1

I[cnl = tp] (2.24)

FP =
N∑

n=1

L∑
l=1

I[cnl = fp] (2.25)

TN =
N∑

n=1

L∑
l=1

I[cnl = tn] (2.26)

FN =
N∑

n=1

L∑
l=1

I[cnl = fn] (2.27)

We then define the following micro-averaged metrics:

• micro-averaged precision:

TP

TP + FP
(2.28)

It looks at all the predicted labels for all instances and counts what fraction of

them are actually correct.

• micro-averaged recall:

TP

TP + FN
(2.29)

It looks at all the relevant labels for all instances and counts what fraction of

them are predicted.

• micro-averaged F1:

2TP

2TP + FP + FN
(2.30)

• micro-averaged Jaccard index:

TP

TP + FP + FN
(2.31)

• micro-averaged Hamming loss:

FP + FN

NL
(2.32)

This is the same as instance-averaged or label-averaged Hamming loss.
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2.2 Optimization for Target Metric

In multi-label classification, there are two general ways to improve prediction

performance w.r.t. an evaluation metric: a) improve the model or the training

method to better fit the data; b) make predictions that are tailored to the metric.

The first one is true for all types of classification problems (including binary and

multi-class classifications) and is easy to understand. The second one is particularly

true for multi-label classification because in multi-label classification, one prediction

strategy that works well under one evaluation metric may not work well under

another evaluation metric. In general, given a conditional joint distribution p(y|x)
learned from the data, one need to apply different prediction strategies in order to

optimize different evaluation metrics. In this section, we present some theoretical

results on the optimal predictions w.r.t. different evaluation metrics. These results

are from [32, 30, 112, 61].

Hamming loss. Hamming loss decomposes over labels and this greatly simplified

the problem. The optimal prediction w.r.t. Hamming loss is made by thresholding

each marginal label probability at 0.5.

h∗(x) = (h1(x), h2(x), ..., hL(x)) (2.33)

where

h�(x) =

{
1 if p(y�|x) > 0.5

0 otherwise
(2.34)

The result shows that theoretically there is no need to consider label dependencies if

the end goal is to optimize Hamming loss.

Set accuracy. The optimal prediction w.r.t. set accuracy is given by the mode of

the conditional joint distribution:

h∗(x) = argmax
y

p(y|x) (2.35)

Intuitively, for the predicted set to be correct as a whole, all labels in the set need

to be considered together. One cannot decide each label regardless of other labels.

Searching for the most probable label combination is a computationally difficult

problem in general as the search space is exponentially large. To facilitate the search

procedure, one could model the joint distribution with some easy-to-manipulate

distribution. Also, instead of looking for the exact optimal solution, one could return

a solution that is close enough to the optimal one.
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Label-averaged F1. The optimal prediction w.r.t. label-averaged F1 is made by

thresholding each marginal label probability at a different value.

h∗(x) = (h1(x), h2(x), ..., hL(x)) (2.36)

where

h�(x) =

{
1 if p(y�|x) > δ�

0 otherwise
(2.37)

and each δ� ∈ (0, 1) is some threshold for a label. This result shows that to optimize

label-averaged F1, one can tune a threshold using validation data for each label

separately to optimize the F1 on the label, and then apply these thresholds during

prediction. As in the case of Hamming loss, it suffices to only estimate the marginal

probabilities and there is no need to capture label dependencies.

Micro-averaged F1. The optimal prediction w.r.t. micro-averaged F1 is made by

thresholding all marginal label probabilities at the same value.

h∗(x) = (h1(x), h2(x), ..., hL(x)) (2.38)

where

h�(x) =

{
1 if p(y�|x) > δ

0 otherwise
(2.39)

and δ ∈ (0, 1) is some threshold. This result shows that to optimize micro-averaged

F1, one can tune a single threshold to optimize the micro-averaged F1 on the

validation data, and then apply the threshold during prediction. As in the case of

label-averaged F1, it suffices to only estimate the marginal probabilities. However,

unlike label-averaged F1 optimization which does not consider label dependencies

at all, micro-averaged F1 optimization incorporates some weak form of label

dependencies through the shared threshold tuning.

Instance-averaged F1. Instance-averaged F1 is one of the most widely used

metrics and how to optimize it has attracted a lot of attentions. Generally speaking,

there are two different approaches. The empirical utility maximization (EUM)

approach trains a classifier to directly maximize the F1 score on the training data (or

through cross-validation). The Decision Theoretical Analysis (DTA) approach first

builds a general probabilistic model p(y|x) using training data without concerning

the F1 metric, and then runs additional inference step to maximize the expected F1
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score during prediction:

h∗(x) = argmax
y′

Ey∼p(y|x)[F (y,y′)]

= argmax
y′

∑
y

p(y|x) · F (y,y′) (2.40)

where y is the (unknown) ground truth, y′ is a candidate prediction and

F (y,y′) = 2
∑L

l=1 yly
′
l∑L

l=1 yl+
∑L

l=1 y
′
l

is the F1 score of the prediction. Note that the ground

truth y is unknown at prediction time, and is treated as a random variable whose

distribution p(y|x) is estimated by the classifier.

Previous empirical studies [83] suggest that each of the two approaches above

has some advantaged and disadvantages. On one hand, if the model class is severely

misspecified and the probabilistic estimations are inaccurate, EUM can be more

robust than DTA. On the other hand, if the test distribution differs from the training

one (a common scenario is when p(x) changes but p(y|x) does not), DTA is more

robust than EUM. The survey paper [91] summarizes many theoretical results and

algorithms aimed at maximizing the F1 metric.

The simplest EUM style classifier consists of a set of marginal probability

estimators and a shared threshold tuned to optimize instance-averaged F1 score on

held-out data [61]. It has exactly the same form as the micro-averaged F1 optimizer:

h∗(x) = (h1(x), h2(x), ..., hL(x)) (2.41)

where

h�(x) =

{
1 if p(y�|x) > δ

0 otherwise
(2.42)

and δ ∈ (0, 1) is some threshold.

There are also some more complex EUM style classifiers. One example is the

structured support vector machines (SSVMs) method, which minimizes a convex

upper bound of the F1 loss (1 minus F1 score) [105, 89, 90].

The most representative DTA approach is the General F-measure Maximizer

(GFM) [112], which is an efficient inference algorithm that finds the F1-optimal

prediction for a given instance based on some probability estimations (see

Algorithm 2.1). The direct input to GFM is not a joint estimation p(y|x), but
rather, some marginal distributions of the form p(yl = 1, |y| = s |x), ∀l, s ∈ {1, ..., L},
where |y| stands for the number of relevant labels in y. The paper [112] proposed

two ways of obtaining these L2 marginals: (1) a model which directly estimates L2
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marginals from data, and (2) the use of a probabilistic joint classifier/estimator

p(y|x) and sampling to generate the required L2 probabilities. The GFM algorithm

has the complexity Θ(L2.376), where L is the number of all possible labels. When

the maximum number of labels per instance T is far less than L, one can replace

the L× L matrix P in the first line of the algorithm by a L× T matrix and reduce

the complexity to Θ(LT 2). Typically T is less than 10 even when L could be on

the order of hundreds or thousands. This can lead to significant speedup on large

datasets.

Algorithm 2.1 General F-Measure Maximizer [112]

1: Input: p(y = 0|x) and L by L Matrix P with elements pls = p(y� = 1, |y| = s |x)
2: Define L by L Matrix W with elements wsk =

2
s+k

3: Compute L by L Matrix Δ = PW

4: for s = 1, 2, ..., L do

5: The best prediction ys with s labels is given by including the s labels l with

the highest Δls

6: Compute the expected F measure E[F (y,ys)] =
∑L

�=1 y
s
lΔ�s

7: end for

8: The expected F measure for the empty prediction y0 = 0 is E[F (y,y0)] = p(y =

0|x).
9: Output: optimal y∗ = argmax0≤s≤L E[F (y,ys)]

2.3 Commonly Used Base Learners

Many multi-label classifiers, including the ones we propose in this thesis, use some

regressors, binary classifiers or multi-class classifiers as base learners. Here we

describe several popular and representative base learners.

2.3.1 Linear Regression

Linear regression is the simplest regression method. It models the continuous output

variable as a linear function of the input variables:

y = β0 + β1x1 + β2x2 + · · ·+ βDxD (2.43)

Given a regression dataset {(xn, yn, wn)}Nn=1 where each instance xn has label yn
and weight wn, we can train a linear regression model by minimizing the weighted

square loss plus some regularization penalty term:

25



CHAPTER 2. FOUNDATIONS

min
β0,β

1

2
∑N

n=1 wn

N∑
n=1

wn(yn − β0 −
D∑

d=1

βdxnd)
2 + λ[α||β||1 + (1− α)

1

2
||β||22] (2.44)

where β = (β1, . . . , βD), || · ||1 is the L1 norm, || · ||2 is the L2 norm, λ is the overall

elastic-net penalty strength, and α is the L1 ratio [39].

The optimization problem (2.44) can be solved in several different ways. One

popular solution is the coordinate descent method [39], which successively minimizes

the overall loss along each coordinate while having all other coordinates fixed:

β0 ←
∑N

n=1 wn(yn −
∑D

d=1 βdxnd)∑N
n=1 wn

(2.45)

βd ←
S( 1

∑N
n=1 wn

∑N
n=1 wnxnd(yn − ỹ

(d)
n ), λα)

1
∑N

n=1 wn

∑N
n=1 wnx2

nd + λ(1− α)
(2.46)

where

• ỹ
(d)
n = β0 +

∑
j �=d βjxnj is the fitted value excluding the contribution from xnd.

• S(z, γ) is the soft-thresholding operator with value

sign(z)(|z| − γ)+ =

⎧⎪⎪⎨
⎪⎪⎩
z − γ if z > 0 and γ < |z|
z + γ if z < 0 and γ < |z|
0 if γ ≥ |z|

(2.47)

The overall training procedure for elastic-net regularized linear regression is

summarized in Algorithm 2.2.

2.3.2 Multi-Class Logistic Regression

Logistic regression is one of the most widely used linear classifiers. Here we describe

the multi-class version of the logistic regression model (also called multinomial

logistic regression), as it is quite general and includes the binary version as a special

case. For a multi-class problem with K classes, logistic regression assigns a set of

weights βk = (βk1, ..., βkD) and a bias term βk0 to each class k, and models the class

conditional probability as

p(y = k|x) = eβk0+
∑D

d=1 βkdxd∑K
l=1 e

βl0+
∑D

d=1 βldxd

(2.48)
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Algorithm 2.2 Training Elastic-net Regularized Linear Regression by Coordinate

Descent [39]

Input: weighted regression dataset {(xn, yn, wn)}Nn=1, initial model parameters β0,β

1: repeat

2: Update β0 as in (2.45)

3: for d = 1, 2, ..., D do

4: Update βd as in (2.46)

5: end for

6: until convergence

Output: model parameters β0,β

Consider a general multi-class dataset {(xn, yn, wn)}Nn=1 in which each instance

xn has instance weight wn and soft target label yn. Here wn is a non-negative

number, and yn = (yn1, yn2, ..., ynK) standards for the target multinomial distribution

satisfying ynk ∈ [0, 1] and
∑K

k=1 ynk = 1.

Logistic regression can be trained by minimizing the regularized loss function

min
{βk0,βk}Kk=1

1∑N
n=1 wn

N∑
n=1

wnKL(yn||p(y|xn)) + λ
K∑
k=1

[α||βk||1 + (1− α)
1

2
||βk||22]

(2.49)

where KL(yn||p(y|xn)) =
∑K

k=1 ynk[log ynk − log p(y = k|xn)] is the KL divergence

between the target class distribution and the predictive class distribution, || · ||1 is

the L1 norm, || · ||2 is the L2 norm, λ is the overall elastic-net penalty strength, and

α is the L1 ratio [39].

This loss function (2.49) can be minimized by repeatedly forming a quadratic

approximation to the loss function and solving the resulting least square linear

regression problem for each class k:

min
βk0,βk

1

2
∑N

n w′nk

N∑
n=1

w′nk(znk − βk0 −
D∑

d=1

βkdxnd)
2 + λ[α||βk||1 + (1− α)

1

2
||βk||22]

(2.50)

where

znk =βk0 +
D∑

d=1

βkdxnd +
ynk − p(y = k|xn)

p(y = k|xn)(1− p(y = k|xn))
(2.51)

w′nk =wnp(y = k|xn)(1− p(y = k|xn)) (2.52)
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which are computed based on current model parameters and fixed during the

optimization of (2.50).

The overall training procedure for elastic-net regularized multi-class logistic

regression is summarized in Algorithm 2.3.

Algorithm 2.3 Training Elastic-net Regularized Multi-Class Logistic Regression by

Coordinate Descent [39]

Input: weighted multi-class dataset {(xn, yn, wn)}Nn=1, initial model parameters

{βk0,βk}Kk=1

1: repeat

2: for k = 1, 2, ..., K do

3: Form the quadratic approximation (2.50) to the loss function (2.49)

4: Treat (2.50) as a weighted-least-square linear regression problem with train-

ing dataset {(xn, znk, w
′
nk)}Nn=1 and model parameters βk0,βk and solve it

using Algorithm 2.2

5: end for

6: until convergence

Output: model parameters {βk0,βk}Kk=1

2.3.3 Gradient Boosting Regressor

Gradient Boosting (GB, or GBDT) is a general framework for training tree ensembles

to optimize given loss functions. A tree ensemble is a list of regression trees that

together produce an overall output:

F (x) = h1(x) + h2(x) + · · ·+ hT (x) (2.53)

where F (x) is the overall ensemble output, and each ht(x) is a regression tree output.

Given a regression/classification dataset {(xn, yn)}Nn=1 and a suitable loss

function L(y, F (x)), gradient boosting builds the tree ensemble in a greedy,

stage-wise fashion (see Algorithm 2.4).

For regression tasks, one can easily modify the general procedure (Algorithm 2.4)

to optimize squared loss L(y, F (x)) = (y − F (x))2, as shown in Algorithm 2.5.
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Algorithm 2.4 Generic Gradient Boosting Training [40]

Input: dataset {(xn, yn)}Nn=1, loss function L, initial model F (x)

1: for iteration t = 1, 2, ..., T do

2: for n = 1, 2, ..., N do

3: compute the gradient of the loss L w.r.t. the current ensemble score F (xn):

gn = ∂L(yn,F (xn))
∂F (xn)

4: end for

5: fit a regression tree ht to the regression dataset {(xn,−gn)}Nn=1

6: shrink the regression tree leaf output values by ρ: ht ← ρht

7: add the new regression tree ht to the ensemble: F = h1 + h2 + · · ·+ ht

8: end for

Output: final ensemble F = h1 + h2 + · · ·+ hT

Algorithm 2.5 Gradient Boosting Regressor Training [40]

Input: regression dataset {(xn, yn)}Nn=1, initial model F (x)

1: for iteration t = 1, 2, ..., T do

2: for n = 1, 2, ..., N do

3: compute the gradient of the loss L w.r.t. the current ensemble score F (xn):

gn = ∂L(yn,F (xn))
∂F (xn)

= F (xn)− yn
4: end for

5: fit a regression tree ht to the regression dataset {(xn,−gn)}Nn=1

6: shrink the regression tree leaf output values by ρ: ht ← ρht

7: add the new regression tree ht to the ensemble: F = h1 + h2 + · · ·+ ht

8: end for

Output: final ensemble F = h1 + h2 + · · ·+ hT

2.3.4 Binary Gradient Boosting Classifier

The ensemble score F (x) provided by gradient boosting model can be easily turned

into a probability using the sigmoid transformation p(y = 1|x) = 1
1+e−F (x) . This

allows GB to be trained on binary classification datasets using maximum likelihood

estimation.

Given a binary classification dataset {(xn, yn)}Nn=1, we define the loss

function on each instance to be the negative log likelihood or KL-divergence

L(yn, F (xn)) = −I[yn = 0] log p(y = 0|x) − I[yn = 1] log p(y = 1|x). One can easily

modify the general procedure (Algorithm 2.4) to optimize this loss function, as

shown in Algorithm 2.6.
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Algorithm 2.6 Binary Gradient Boosting Classifier Training [40]

Input: binary classification dataset {(xn, yn)}Nn=1, initial model F (x)

1: for iteration t = 1, 2, ..., T do

2: for n = 1, 2, ..., N do

3: compute the gradient of the loss L w.r.t. the current ensemble score F (xn):

gn = ∂L(yn,F (xn))
∂F (xn)

= p(y = 1|xn)− yn
4: end for

5: fit a regression tree ht to the regression dataset {(xn,−gn)}Nn=1

6: shrink the regression tree leaf output values by ρ: ht ← ρht

7: add the new regression tree ht to the ensemble: F = h1 + h2 + · · ·+ ht

8: end for

Output: final ensemble F = h1 + h2 + · · ·+ hT

2.3.5 Multi-Class Gradient Boosting Classifier

Gradient Boosting can also be applied to multi-class classification. It maintains K

tree ensembles F1, F2, ..., FK for a K-class problem. Each ensemble Fk is responsible

for providing the score Fk(x) for a class k.

Fk(x) = hk1(x) + hk2(x) + · · ·+ hkT (x), k = 1, 2, ..., K (2.54)

Similar to multi-class LR, multi-class GB computes the class probabilities using

the softmax transformation

p(y = k|x) = eFk(x)∑K
j=1 e

Fj(x)
(2.55)

Given a general multi-class dataset {(xn, yn)}Nn=1 with soft target labels

(ynk ∈ [0, 1] and
∑K

k=1 ynk = 1), GB can be trained by minimizing the KL-

divergence between the target distribution and the predictive distribution, defined as

KL(yn||p(y|xn)) =
∑K

k=1 ynk[log ynk − log p(y = k|xn)]. Notice that multi-class GB

and LR have the same training objective and similar design. The major difference

is that in LR each class score is a liner function of the features while in GB it is a

non-linear function implemented by a tree ensemble. In this sense, multi-class GB

can be viewed as a non-linear generalization of multi-class LR.

The multi-class GB training procedure is derived from the generic GB training

procedure Algorithm 2.4. But since multi-class GB contains K ensembles, the

training needs to have an additional loop over ensembles. The overall training

procedure is summarized in Algorithm 2.7.
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Algorithm 2.7 Multi-Class Gradient Boosting Classifier Training [40]

Input: multi-class dataset {(xn, yn)}Nn=1, initial models F1, F2, ..., FK

1: for iteration t = 1, 2, ..., T do

2: for k = 1, 2, ..., K do

3: for n = 1, 2, ..., N do

4: compute the gradient of the loss L w.r.t. the current ensemble score Fk(xn):

gnk =
∂L(yn,F1(xn),F2(xn),...,FK(xn))

∂Fk(xn)
= p(y = k|xn)− ynk

5: end for

6: fit a regression tree hkt to the regression dataset {(xn,−gnk)}Nn=1

7: shrink the regression tree leaf output values by ρ: hkt ← ρhkt

8: add the new regression tree hkt to the ensemble Fk: Fk = hk1+hk2+ · · ·+hkt

9: end for

10: end for

Output: final K ensembles F1, F2, ..., FK

2.3.6 Isotonic Regression

Isotonic regression [98] is a technique for fitting a non-decreasing curve to a sequence

of observations. Given a sequence of one dimensional inputs x1 ≤ x2 ≤ · · · ≤ xN

and their labels y1, y2, ..., yN , isotonic regression fits a curve g(x) with the property

g(xn) ≤ g(xn+1). See Figure 2.1 for an illustration.

Figure 2.1: Isotonic regression vs. linear regression. By Alexeicolin - Own work,

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=23732999
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Isotonic regression is trained by minimizing squared error

min
g

N∑
n=1

(yn − g(xn))
2 subject to g(xn) ≤ g(xn+1) (2.56)

This constrained optimization problem (2.56) can be solved efficiently in linear time

using the pool-adjacent-violators (PAV) algorithm [13].

After training, isotonic regression can be used for prediction: for a new input x

that lies between xn and xn+1, isotonic regression outputs the interpolated value1

g(x) = x−xn

xn+1−xn
[g(xn+1)− g(xn)] + g(xn) .

Isotonic regression is often used as a calibrator for classifiers. Consider a

classifier that has made N predictions on a dataset. Let s1 ≤ s2 ≤ · · · ≤ sN be the

(uncalibrated) confidence scores the classifier assigned to its predictions (assuming

the predictions are already sorted by scores), and let v1, v2, ..., vN ∈ {0, 1} be

the binary correctness of these predictions compared to ground truth. One could

partition the inputs into K (e.g., 100) fixed size buckets and compute the average

score xk and average accuracy yk in each bucket k. If the scores the classifier

produced indicate the likelihood of making correct predictions, xk should be close to

yk. If this is not the case, one can train an isotonic regression g on x1, x2, · · · , xK

with labels y1, y2, · · · , yK and use g as a calibrator to map any uncalibrated score x

to a calibrated one g(x). Note that because of the square loss training objective, one

can also directly train the calibrator g on s1, s2, · · · , sN with labels v1, v2, ..., vN and

obtain the same regression model.

1Another option is to output g(xn) and the resulting regression curve is piece-wise constant.
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Conditional Bernoulli Mixtures

In the previous chapter, we have described many different evaluation metrics for

multi-label classification and also presented different prediction strategies that are

tailored for different metrics. Some of these prediction methods only need the model

to provide marginal label probabilities p(y�|x); while others require the model to

estimate the joint probability among all labels p(y|x). For example, prediction

methods designed for Hamming loss and label-averaged F1 score only performs

marginal inference while prediction methods designed for set accuracy and instance

F1 require joint inference. Clearly for a multi-label model to be generally useful for

all types of inference, it needs to provide a joint probability estimation and it should

also allow for efficient marginalization based on the joint. This chapter describes

conditional Bernoulli mixture (CBM), a new probabilistic model for multi-label

classification. It uses a mixture structure to estimate the joint distribution. This

structure allows for efficient training, joint inference and marginal inference. CBM

is also a reduction method: it transforms a multi-label classification problem to a

multi-class classification problem and a series of binary classification problems. This

allows CBM to use existing binary and multi-class models as building blocks.

3.1 Label Dependencies and Joint Estimations

The simplest approach to estimate the joint probability is to estimate the marginal

probabilities and then take the product, i.e., p(y|x) = ∏L
�=1 p(y�|x), which effectively

assumes conditional independence among labels and ignores label dependencies.

This is the Binary Relevance (BR) [107] approach which reduces a multi-label

problem into L independent (probabilistic) binary classification problems, and is
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widely used due to its simplicity. Its disadvantage, as mentioned earlier, is that its

predictions based only on marginal probabilities can be conflicting or incomplete.

For example, a medical note may be predicted with both the code Pain in left

knee and the code Pain in unspecified knee; an image may be tagged with cat

but not animal. Such predictions may not seem very problematic if one uses instance

F1 score, Hamming loss or Jaccard index as the evaluation metric – predicting 3

out of 4 codes right will give a F1 score of 0.86 (please refer to Section 2.1 for the

definitions of these metrics). However, if one uses subset accuracy for evaluations,

any predictions with minor mistakes will be deemed wrong and receive zero credit.

In computing subset accuracy, a predicted subset is considered correct only when

it matches the true subset exactly. Admittedly, this metric is very stringent in

evaluation. However, optimizing for subset accuracy is a very interesting algorithmic

design and research problem, as it encourages the classifiers to output coherent and

complete predictions.

At the other extreme is the Power-Set (PowSet) approach [107], treating each

label subset y as a class, and trains a (probabilistic) multi-class classifier. As a

consequence, one would be restricted in practice to predicting only label subsets seen

in the training data and always assigning zero probabilities to unseen subsets; even

for many of the subsets observed there would likely be a scarcity of training data.

Power-Set is handling label dependencies and its predictions are coherent, but the

method is often infeasible on the exponential number of label sets.

3.2 Bernoulli Mixtures

Mixture models offer a flexible and powerful framework for general multivariate

density estimation problems. A mixture generally has the form

p(y) =
K∑
k=1

πkp(y;βk), (3.1)

which approximates a complex joint p(y) by a weighted combination of K

component densities p(y;βk), each of which typically takes some simple density

form parametrized by βk. The Expectation Maximization (EM) algorithm can be

employed to train such mixture models by iterating between estimating the mixture

memberships and fitting component densities.

Bernoulli mixtures (BM) are classic models for multi-dimensional binary

variable density estimation [66, 76, 18], where the learnability is realized by assuming

independence of variables within each mixture component. Thus each component
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density p(y;βk) is simply a product of Bernoulli densities and the overall model has

the form

p(y) =
K∑
k=1

πk

L∏
�=1

Ber(y�;μ
k
� ), (3.2)

where Ber(y�;μ
k
� ) denotes the Bernoulli distribution with head probability μk

� . See

Figure 3.1 for an illustration of a simple Bernoulli mixture with 3 components.

p(y)

p(y;β1) =
Ber(y1;μ

1
1)× · · · × Ber(yL;μ

1
L)

π1

p(y;β2) =
Ber(y1;μ

2
1)× · · · × Ber(yL;μ

2
L)

π2

p(y;β3) =
Ber(y1;μ

3
1)× · · · × Ber(yL;μ

3
L)

π3

Figure 3.1: An illustration of Bernoulli mixture with 3 components.

The intuition behind Bernoulli mixture is that globally dependent labels can

be less dependent in a given context. BM can be regarded as a soft clustering

algorithm which groups correlated labels into the same cluster. The probability

that label � belongs to cluster k is μk
� . For instance, Figure 3.2 shows three sample

label clusters found by the BM algorithm on the MSCOCO image dataset [5].

In particular, the labels car and truck are globally highly correlated and they

appear in the same cluster with high probabilities. If a person is told that an

image contains a truck and is asked to guess what else might be in the same

image, a reasonable guess could be a car since the topic of the image might be

road traffic. Therefore knowing that there is a truck raises one’s belief about car.

Mathematically, p(car | truck) > p(car | no truck). However, if the person is

already told that the topic of the image is road traffic, then whether the image

Figure 3.2: Three label clusters found by Bernoulli mixture on MSCOCO image

dataset. For each label in a cluster, the font size is proportional to its probability of

belonging to the cluster.
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contains a truck or not should not influence his belief on car. Mathematically,

p(car | truck, topic = road traffic) ≈ p(car | no truck, topic = road traffic). In

other words, the two globally dependent labels car and truck become roughly

independently under this given topic, and this can be written mathematically as

car⊥truck | topic = road traffic.

BM has a few attractive properties. First, dependencies : although the L

variables are assumed to be independent inside each component, they are in general

dependent in the mixture (they are forced to be independent only when K = 1). In

other words, p(y) 
= ∏L
�=1 p(y�). This can also be verified by computing the following

covariance matrix and observing that it is non-diagonal for K ≥ 2 [18].

Cov[y] =
K∑
k=1

πk[Σk + μk(μk)�]− E(y)E(y)�, (3.3)

where E(y) =
∑K

k=1 π
kμk, Σk = diag{μk

� (1 − μk
� )}, and μk = (μk

1, μ
k
2, ..., μ

k
L)
�.

Second, complexity : specifying the full joint of L variables requires 2L parameters

and is unmanageable. By contrast, a BM model with K components uses KL +K

parameters to approximate the joint, and is far more manageable. Third, efficiency :

the full factorization of each component makes fitting BM efficient via the EM

algorithm.

In this work, we propose a new multi-label classification method which

approximates the conditional joint p(y|x) based on Bernoulli mixtures. The method

simultaneously learns the label dependencies from data and trains classifiers to

account for such dependencies.

3.3 Conditional Bernoulli Mixtures

For multi-label classification, we model the conditional joint p(y|x) with a

discriminative extension of BM, capturing conditional dependencies among binary

labels given features. The analysis in [32] shows that labels could be largely

conditionally independent given features (i.e., p(y|x) ≈ ∏L
�=1 p(y�|x)), even when

labels are strongly marginally dependent (i.e., p(y) 
= ∏L
�=1 p(y�)), as long as each

label is highly predictable from features. Therefore it is not necessary to capture

correlations among easy-to-predict labels; it is sufficient to only capture those

correlations which involve some hard-to-predict labels. Thus conditioning on features

greatly reduces the need to estimate label correlations and makes learning much

easier; the conditional on x is essential for good approximation and effective training,
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without making prior assumptions about the form of label dependencies (as many

other methods do).

Making both mixture coefficients and Bernoulli distributions conditional on x,

we obtain our proposed model, conditional Bernoulli mixtures (CBM):

p(y|x) =
K∑
k=1

π(z = k|x;α)
L∏

�=1

b(y�|x;βk
� ), (3.4)

where α and βk
� (� = 1, 2, ..., L; k = 1, 2, ..., K) are model parameters to be learned,

and z is a hidden categorical indicator variable, such that z = k if the data point is

assigned to component k. Here we use π and b to represent the conditional mixture

membership distribution and the conditional binary label distribution, respectively.

CBM reduces a multi-label problem to a multi-class problem and several binary

problems, approaching p(y|x) akin to divide and conquer : the categorical distribution

π(z|x;α) assigns each instance x to 1 out of K components probabilistically. Its

goal is to divide the feature space into several regions such that each region only has

weak conditional label correlations and can be approximated by a simple component.

This gating function π(z|x;α) can be instantiated by any multi-class classifier which

provides probability estimations, such as a multinomial logistic regression with

parameters α.

Inside each region k, the local conditional joint density is approximated by

a product of conditional marginal densities. Every local binary label predictor

b(y�|x;βk
� ) estimates the probability of getting label y� from component k for

data point x, and can be instantiated by any binary classifier which provides

probability estimations, such as a binary logistic regression with parameters βk
� .

All K components together with the gating function are learned jointly in order to

break the global label correlation into simple forms.

On one extreme, if CBM has only one component (and hence π(z|x;α) plays

no role), all labels are conditionally independent and CBM degenerates to Binary

Relevance. On the other extreme, if CBM assigns one component to each unique

label subset and fixes each b(y� = 1|x;βk
� ) to be the corresponding binary constant

(1 if label � is in the subset and 0 otherwise), then the overall CBM model simply

selects one label subset from all possible subsets, which is conceptually the same as

the Power-Set approach. By varying the number of components and the complexity

of each component, CBM can provide a continuous spectrum between these two

extremes (see Figure 3.3). Just as Binary Relevance and Power-Set, CBM is purely

a reduction method. The main advantage of reduction methods compared to new

models specifically designed for multi-label problem is that the reduction approach
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makes it easier to incorporate and reuse many well-developed multi-class and binary

classifiers. In Section 3.4, we will demonstrate two different instantiations of CBM,

one with logistic regressions, and the other with gradient boosted trees.

CBM
Binary

Relevance
Power
Set

number of components K

K = 1 K = 2LK = 20 ∼ 50

weak modeling power sweet spot not scalable

Figure 3.3: CBM vs. Binary Relevance vs. Power Set

An illustrative example. Before diving into the model training details, we

illustrate how CBM performs joint label classifications with an example. Figure

3.4 shows a test image in the NUSWIDE dataset, for which the matched label

reflection is missed by Binary Relevance but is captured by CBM.

For this image, the most influential components produced by CBM are shown

in Figure 3.5. Simply averaging individual label probabilities by component mixing

weights gives the conditional marginals p(lake|x) = 0.56, p(water|x) = 0.69,

p(sunset|x) = 0.66, and p(reflection|x) = 0.32, which indicate that unlike lake,

water and sunset, the label reflection by itself is not deemed as probable by CBM.

However from the CBM joint density p(y|x) we can also infer Pearson correlation

coefficients ρreflection,lake = 0.50, ρreflection,water = 0.40, ρreflection,sunset = 0.17 and

observe that reflection is positively correlated with lake, water, and sunset. In

fact, the joint probability asserts that the subset {clouds, lake, sky, sunset,

water, reflection} is the most probable one, with probability 0.09. By contrast,

the subset {clouds, lake, sky, sunset, water} has a lower probability 0.06.

Therefore, although individually unlikely, the label reflection is correctly added to

the mostly likely subset due to label correlations.

3.4 Training CBM with EM

CBM can be trained by maximum likelihood estimation on a given dataset

{(xn,yn)}Nn=1. Below we first derive a generic EM algorithm that works for any

instantiation of the components, and then consider two concrete instantiations.
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Figure 3.4: A test image from the NUSWIDE multi-label dataset [25] for which

BR gives incorrect predictions and CBM gives correct predictions.. Independent bi-

nary logistic regressions predict the labels {clouds, lake, sky, sunset, water}.
Our proposed method correctly predicts {clouds, lake, sky, sunset, water,

reflection}, because it captures the dependencies between reflection and the

other labels.

To make the mathematical derivation clear, we use different symbols for random

variables and values of random variables. We use Yn when treating the labeling of

xn as an unknown random variable and yn when referring to its specific labeling

assignment given in the training set. The likelihood for the dataset is

N∏
n=1

{
K∑
k=1

[π(zn = k|xn;α)
L∏

�=1

b(yn�|xn;β
k
� )]}.

Since the model contains hidden variables, we use EM to minimize an upper bound

of the negative log likelihood. Denoting the posterior membership distribution

p(zn|xn,yn) as Γ(zn) = (γ1
n, γ

2
n, ..., γ

K
n ), the upper bound can be written as

N∑
n=1

KL(Γ(zn)||π(zn|xn;α))

+
K∑
k=1

L∑
�=1

N∑
n=1

γk
nKL(Ber(Yn�; yn�)||b(Yn�|xn;β

k
� )), (3.5)

where Ber(Yn�; yn�) is the Bernoulli distribution with head probability yn�.
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possible labels

Figure 3.5: The top 4 most influential components for the test image in Figure 3.4. π

values indicate component mixing coefficients. Each bar represents an individual label

probability in one component. Labels with near zero probabilities are not displayed

here.

E Step: Re-estimate the posterior membership probability of each data point

belonging to each component:

γk
n =

π(zn = k|xn;α)
∏L

�=1 b(yn�|xn;β
k
� )∑K

j=1 π(zn = j|xn;α)
∏L

�=1 b(yn�|xn;β
j
�)
. (3.6)

M Step: Update all model parameters. The bound (3.5) shows that the

optimization of all parameters can be nicely decomposed into a series of separate

optimization problems:

αnew = argmin
α

N∑
n=1

KL(Γ(zn)||π(zn|xn;α)), (3.7)

βk
� new = argmin

βk
�

N∑
n=1

γk
nKL(Ber(Yn�; yn�)||b(Yn�|xn;β

k
� )). (3.8)
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The optimization problem defined in (3.7) is a multi-class classification problem

with target class distribution (soft labels) Γ(zn) = (γ1
n, γ

2
n, ..., γ

K
n ) for xn. The

training goal for π(z|x;α) is to assign (probabilistically) each data point to a

component based only on its features, such that the assignment matches the

posterior component membership determined by both features and true labels.

The optimization problem defined in (3.8) is a weighted binary classification

problem. xn has target label yn� and weight γk
n. The predictor b(y�|x;βk

� ) is trained

as a binary classifier for label � in component k, based only on training data within

(soft) component k.

To train CBM, we iterate between the E step and the M step, until the upper

bound (3.5) converges (see Algorithm 3.1). In practice, the EM algorithm can

Algorithm 3.1 Generic Training for CBM

1: repeat

2: E Step

3: for n = 1, 2, ..., N ; k = 1, 2, ..., K do

4: update γk
n as in (3.6)

5: end for

6: M Step

7: update α as in (3.7)

8: for k = 1, 2, ..., K; � = 1, 2, ..., L do

9: update βk
� as in (3.8)

10: end for

11: until convergence

get stuck in local optima, so careful initializations are often necessary for good

performance. Due to the natural connection between CBM and BM, one simple

way of initializing CBM is to first fit a BM just for label density estimation without

looking at features. BM can be trained very quickly by a simpler EM algorithm [18].

We can use several random starts for a set of BM models, and select the one with

the best training objective score to initialize the CBM training procedure.

3.4.1 CBM with Logistic Regression Learners

In the simplest form all underlying models in CBM are linear. We employ a

multinomial logistic regression for the gating function π, and a binary logistic

regression for each predictor b. The outer loop of the training procedure is the EM

algorithm described above. In each M step, all objectives defined in (3.7) and (3.8)
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are convex (although the overall EM optimization is non-convex). To optimize each

logistic regression, we compute the gradient of the corresponding objective w.r.t. its

parameters and update all parameters using gradient based optimization methods.

Here we choose L-BFGS method [85], which is the state-of-the-art optimization

method for large scale logistic regressions. We can start with the existing model,

and perform a few incremental update steps until it converges. To avoid over-fitting,

we also add L2 regularizations (Gaussian priors) to all parameters.

CBM+LR complexity. The overall complexity of the training procedure for CBM

is dominated by the updates in M steps and depends on the complexities of the

binary and multi-class learning algorithms used. For CBM with logistic regression

(LR) learners, we can measure the complexity of each L-BFGS (or gradient descent)

update for all model parameters. If N is the number of instances, D the number

of features, L the number of labels, C the number of unique label subsets in the

training set, and K the number of CBM components, then each CBM+LR update

takes O(KLDN). For comparison, each update takes O(LDN) in Binary Relevance

with LR, and takes O(CDN) in Power-Set with LR. For large datasets, typically

KL < C, and CBM is slower than Binary Relevance but faster than Power-Set.

In Section 3.5, we will develop a few tricks to speed up CBM training so that its

complexity does not grow linearly with K.

3.4.2 CBM with Gradient Boosting Learners

Many datasets require non-linear decision boundaries, in which case the CBM

model with logistic regressions may not have enough explanation power. To make

CBM non-linear, we use gradient boosted trees (GB) for both π and b. The

original gradient boosted trees algorithm described in [40] is designed for standard

multi-class problems, and does not take label distributions or instance weights as

inputs, thus some modifications are necessary. The target label distribution is easy

to deal with: one still computes the functional gradient of the objective w.r.t. each

ensemble scoring function, where the objective is defined by the target distribution.

To handle instance weights, one ignores them when calculating functional gradients,

and performs a weighted least squares fit when fitting each regression tree to the

gradients. Unlike logistic regression, where all parameters can be easily updated,

gradient boosting introduces new trees to the ensemble while keeping old trees

untouched. Thus the M step here is slightly different from before: rather than

re-adjusting all parameters to optimize the objective, boosting improves the objective

by adding a few more trees. This amounts to a partial M step, and the resulting EM

algorithm is usually called the generalized EM algorithm [51]. We emphasize that the
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use of boosting as an underlying non-linear classifier here is just for demonstration

purposes. Other classifiers such as neural networks could also be used. This is in

direct contrast to AdaBoost.MH and Adaboost.MR [100] which specifically employ

boosting to optimize Hamming loss and rank loss.

3.5 Speeding up Training with Sparse Structures

One of the intended application of the developed method is large scale multi-label

text classification, in which the number of labels/features/instances can be enormous.

The original CBM training and prediction complexity grows linearly with the number

of labels and the number of mixture components, which could be prohibitively large.

Also storing many mixture components each with many classifiers can be difficult.

We seek to reduce the complexity with two approximations that leverage the

sparse structure naturally arising in CBM.

y1 y2 y3 y4 y5 y1 y2 y3 y4 y5 y1 y2 y3 y4 y5 y1 y2 y3 y4 y5 y1y2 y5 y2 y3 y1 y2 y5 y4 y5

Figure 3.6: CBM with dense structure vs. CBM with sparse structure. Mixture

components are the leafs; dashed arrows represent binary label classifiers; solid arrow

are labels always predicted in the component. Missing arrows indicate labels never

predicted in the component.

The first approximation is to skip some instances in each binary classifier

training. We say an instance is active in a component if its membership degree

γk
n is not close to 0 (greater than some small threshold δ). When the number of

components is large enough, it is often the case that some γk
n values are extremely

close to 0 (but are not exactly 0 due to the softmax operation in the multi-class

classifier π). Notice that γk
n acts as an instance weight in the binary classifier

training. Therefore instances with very small γk
n have very little impact on the

actual classifier training and can be safely skipped. So for each binary classifier in a

component k, we only train it on the instances that are active in the component.

The second approximation is to skip some binary classifiers in each component.
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We say a label � is active in a component k if the fraction of instances in the

component matching this label is not close to either 0 or 1, i.e., ε <
∑

n:ynl=1 γ
k
n < 1−ε,

for some small constant ε. If
∑

n:ynl=1 γ
k
n <= ε, then effectively no data in the

component contains this label. If
∑

n:ynl=1 γ
k
n >= 1 − ε, then effectively all data

in the component contains this label. In both cases, there is no need to train a

dedicated classifier – constant outputs suffice. In practice, when the number of

components is large enough, only a few labels are actually active in each component

(see Figure 3.2). Most of the labels almost never occur; while a few others may

almost always occur. Therefore, the number of binary classifiers we need to train in

each component is far smaller than the total number of labels L. See Figure 3.6 for

an illustration.

Analyzing the theoretical complexity of the sparse CBM with these

approximation tricks is not straightforward. Here we provide some empirical results.

Our preliminary experiments show that by only allocating classifiers for active labels

greatly speeds up training and prediction without damaging accuracy. On the

RCV1-2K dataset with 2,456 labels, the dense CBM with 50 components contains

122,800 binary classifiers, while the sparse CBM can skip 107,643 binary classifiers

and only train the remaining 15,157 classifiers. That reduces both the training time

and the memory usage by 90%. We also notice that training a sparse CBM with

many components can sometime be even faster than training a BR model, because

with many components, each binary classifier training is done on a subset of data

within the component, and thus can be much faster. On RCV1-2K dataset, training

sparse CBM is 3 times faster than training BR.

3.6 Making Predictions to Optimize Set Accuracy

So far we have described CBM’s model structure and its training method. After

training is done, CBM produces a joint distribution p(y|x), which allows us to

perform various inferences. We are particularly interested in prediction methods that

optimize a given evaluation metric. In Section 3.6, we derive a dynamic programming

based prediction method to optimize set accuracy. In Section 3.7, we feed the joint

distribution to an existing procedure named GFM to optimize instance-averaged F1.

In Section 3.8, we perform marginal based prediction to optimize Hamming loss.

According to [32], making the optimal prediction in terms of subset accuracy

for a given x requires finding the most probable label subset y∗ = argmaxy p(y|x).
There are 2L label subset candidates, and it is intractable to evaluate the probability

for each of them. Many multi-label methods suffer from this intractability for exact
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inference (see Section 3.11). Fortunately for CBM, its special structure allows it to

make predictions efficiently, with either sampling or dynamic programming. As a

common preprocessing step, for a given x, we can first compute πk = π(z = k|x;α)

and μk
� = b(y� = 1|x;βk

� ), for all k = 1, 2, .., K and � = 1, 2, ..., L.

3.6.1 Prediction by Sampling

The CBM density form (3.4) suggests a natural sampling strategy for a label subset

y. We first sample a component k according to the mixture coefficients π1, ..., πK .

Then from this component, we sample each label y� independently with probability

μk
� . The procedure can be repeated multiple times to generate a set of y candidates,

from which we pick the most probable one. The sampling strategy works best

when the most probable label subset has a high probability. Sampling is easy to

implement, but does not guarantee that the predicted y is indeed the optimal one.

3.6.2 Prediction by Dynamic Programming

In order for the overall probability p(y|x) to be high, there must exist a component

k for which the component probability
∏L

�=1 b(y�|x;βk
� ) is high. On the other hand,

one can show that the y∗ maximizing the overall probability does not necessarily

maximize any component probability. To find y∗, we design a dynamic programing

procedure Find-Next-Highest() that enumerates label subsets in a decreasing

probability order in each component, and then we iterate round-robin across

components until we are certain that the unchecked subsets will never produce

a high overall probability. We define an operation Find-Next-Highest() as in

Algorithm 3.2. For a component k, the y with the highest component probability is

the set containing precisely all the � with μk
� ≥ 1/2. To produce a ranked list, we

Algorithm 3.2 Find-Next-Highest()

1: y = Qk.deque()

2: for l = 1, 2, ..., L do

3: Generate a new candidate y′ by flipping the l-th bit of y

4: if y′ has not been added to Qk before then

5: Qk.enqueue(y′)
6: end if

7: end for

8: Output: y
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use a max priority queue Qk to store candidate label subsets and their associated

component probabilities. Initially, Qk contains the y with the highest component

probability. The t-th call to Qk.Find-Next-Highest() returns the y with the t-th

highest component probability.

The overall prediction algorithm (Algorithm 3.3) iterates over all components,

checks the next candidate recommended by each component (Lines 9-10), updates

the best candidate found so far (Lines 11-13), computes an upper bound for the

probability of any unvisited candidate (Lines 14-15). The algorithm terminates when

no remaining candidate can possibly have a higher probability than the existing best

candidate. In practice, we observe that the algorithm rarely visits elements deeper

than rank 10 in the component ranked lists.

Algorithm 3.3 Prediction by Dynamic Programming

1: Input: πk, μk
� , k = 1, 2, ..., K, � = 1, 2, ..., L

2: Initialize the maximum overall probability M = −∞
3: for k = 1, 2, ..., K do

4: Initialize the latest component probability Gk = +∞
5: Initialize the priority queue Qk

6: end for

7: while true do

8: for k = 1, 2, ..., K do

9: y = Qk.Find-Next-Highest()

10: Let p =
∑K

m=1 π
m
∏L

�=1 Ber(y�;μ
m
� )

11: if p > M then

12: Set M = p and y∗ = y

13: end if

14: Set Gk =
∏L

�=1 Ber(y�;μ
k
� )

15: Compute threshold τ =
∑K

m=1 π
mGm

16: if M ≥ τ then

17: Output y∗ and terminate

18: end if

19: end for

20: end while

Algorithm 3.3 is a special case of the well-known Threshold algorithm [36],

which finds the globally best candidate by aggregating several sorted lists1. The

1Our first version of Algorithm 3.3 published in [68] uses a different stop condition, which makes

the algorithm less efficient than the current version. Both versions produce identical outputs.
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Threshold algorithm has the following general setup: each candidate is given K

scores by K subsystems, and the overall score of each candidate is computed by a

fixed monotonic aggregation function of these K scores. Each subsystem supports

both sequential access (where all candidates are visited in decreasing score order)

and random access (where the score of a given candidate is requested). In our

CBM prediction task, each candidate is a label set, each subsystem is a mixture

component, each score is a component probability, and the aggregation function

is the weighted average where the weights are mixture coefficients. The dynamic

programming algorithm (Algorithm 3.2) provides the sorted lists.

Dealing with empty predictions. Predicting empty label subsets could be

undesirable when it is known a priori that each instance matches at least one label.

The dynamic programming prediction algorithm can be easily modified to output

the most probably non-empty subsets. In our experiments, we allow CBM to predict

empty sets only when the training set contains empty sets. This strategy is shown

to improve the test performance slightly. Occasionally, this could make CBM with 1

component perform slightly differently from BR.

3.6.3 Experiment Results

We perform experiments on five commonly used multi-label datasets: SCENE,

TMC2007, MEDIAMILL, NUSWIDE and RCV1. For the sake of reproducibility, we

adopt the train/test splits provided by the datasets. Datasets details are provided

in Appendix A.

We compare conditional Bernoulli mixtures (CBM) with the following methods

which estimate p(y|x): Binary Relevance (BR), Power-Set (PowSet), Classifier

Chains (CC), Probabilistic Classifier Chains with Beam Search (PCC), Ensemble

of Classifier Chains with label voting (ECC-label) and subset voting (ECC-subset),

Conditional Dependency Networks (CDN) and pair-wise Conditional Random

Fields (pairCRF). See Appendix B for the implementations used. For all methods

which require a base learner, we employ logistic regression as a common base

learner. Additionally, we test gradient boosted trees (GB) as a non-linear base

learner in conjunction with BR, PowSet and CBM. Both LR and pairCRF are L2

regularized. Hyper parameter tuning is done by cross-validation on the training

set (see Appendix C for details). For methods involving random initializations or

sampling, the reported results are averaged over 3 runs.

Test subset accuracy on five datasets is shown in Table 3.1, grouped by the

base learner. On four datasets, the highest subset accuracy is achieved by one of
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Table 3.1: Comparison between CBM and other methods in terms of set accuracy.

All numbers are in percentages. Best performances are bolded.

Method Learner SCENE RCV1 TMC2007 MEDIAMILL NUSWIDE

BR LR 51.5 40.4 25.3 9.6 24.7

PowSet LR 68.1 50.2 28.2 9.0 26.6

CC LR 62.9 48.2 26.2 10.9 26.0

PCC LR 64.8 48.3 26.8 10.9 26.3

ECC-label LR 60.6 46.5 26.0 11.3 26.0

ECC-subset LR 63.1 49.2 25.9 11.5 26.0

CDN LR 59.9 12.6 16.8 5.4 17.1

pairCRF linear 68.8 46.4 28.1 10.3 26.4

CBM LR 69.7 49.9 28.7 13.5 27.3

BR GB 59.3 30.1 25.4 11.2 24.4

PowSet GB 70.5 38.2 23.1 10.1 23.6

CBM GB 70.5 43.0 27.5 14.1 26.5

the CBM instantiations; on the other dataset, CBM is close to the best one. This

demonstrates the effectiveness of CBM for optimizing subset accuracy. On the

SCENE and MEDIAMILL datasets, CBM+GB performs better than CBM+LR,

which shows the benefit of being able to incorporate non-linear components. By

contrast, pairCRF is restricted to work with linear functions, lacking the flexibility

of CBM.

Figure 3.7: Test subset accuracy on TMC dataset with varying number of compo-

nents K for CBM+LR (left) and CBM+GB (right) compared with BR, PowSet, and

pairCRF.
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Impact of number of components. Figure 3.7 shows how increasing the number

of components K affects test performance for CBM on TMC dataset. When K = 1,

CBM only estimates marginals and is equivalent to BR (the slight difference in

performance is due to the handling of empty set in CBM prediction). Increasing K

from 1 to 15 makes CBM quickly become a better joint estimator and outperform

BR. Increasing K further gives smaller improvement for CBM and the performance

asymptotes as K reaches about 30. Other datasets show similar trends.

3.7 Making Predictions to Optimize F1 Score

In practice, and particularly in industry, the instance-averaged F-measure—which

gives partial rewards for subset predictions based on overlap with the correct

subset—is much better suited for many label set classification tasks than strict

subset-accuracy (see Section 2.1 for the precise definitions of these metrics). For

example, in a medical note, a patient may present with multiple illnesses or undergo

a procedure with multiple billing codes; predicting five out of six codes correctly is a

considerable help to medical billing systems. Multi-label competitions organized by

industrial companies, such as the Yelp business categorization challenge [123] and the

Greek Media challenge [116], employ F-measure for evaluation. In this section, we

take the joint estimation p(y|x) provided by CBM and develop a different prediction

algorithm that seek to optimize instance F1 as opposed to set accuracy.

3.7.1 Prediction with GFM

We rely on the General F-measure Maximizer (GFM) [112] algorithm described

earlier in Section 2.2 (see Algorithm 2.1) to find the prediction y∗ which maximizes

the expected F1-measure:

y∗ = argmax
y′

Ey∼p(y|x)[F (y,y′)]

= argmax
y′

∑
y

p(y|x) · F (y,y′) (3.9)

where y is the (unknown) ground truth label vector, y′ is a candidate prediction

vector and F (y,y′) = 2
∑L

l=1 yly
′
l∑L

l=1 yl+
∑L

l=1 y
′
l

is the F1 score of the prediction. Note that the

ground truth y is unknown at prediction time, and is treated as a random variable

whose distribution p(y|x) is estimated by the classifier.

The direct input to GFM is not a joint estimation p(y|x), but rather, some
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marginal distributions of the form p(yl = 1, |y| = s | x), ∀l, s ∈ {1, ..., L}, where
|y| stands for the number of relevant labels in y. This formula can be read as,

for example, “the probability of the given document having s = 5 relevant labels

and cat is one of them”. There are (no more than) L2 probabilities in this form,

per instance. The paper [112] proposed two ways of obtaining these L2 marginals

probabilities: (1) a model which directly estimates L2 marginals from data, and (2)

the use of a probabilistic joint classifier/estimator p(y|x) and sampling to generate

the required L2 probabilities.

Support inference. We follow the idea (2) but make a critical change: after

training the joint estimator p(y|x), we derive the required L2 marginals using support

inference as opposed to sampling. Sampling is easy when one could take advantage

of the classifier structure: For BR each label can be sampled independently; in PCC

one can sample labels one by one, using ancestral sampling; in CBM one can first

sample a component, and from the component sample each label independently.

However sampling is ineffective for large L and low-confidence (”flat”) joint density

that spreads probability mass over many label combinations.

Support inference only considers probabilities of label combinations seen in

training. We enumerate all seen label combinations, evaluate their probabilities and

then marginalize. These marginals are then fed into GFM to produce the F1-optimal

prediction. At first glance, support inference seems to have the limitation of not

considering unseen label combinations. In reality this limitation only appears during

marginalization, and is largely mitigated by GFM in the prediction step. It is not

hard to show that although support inference only considers existing combinations,

support inference + GFM can output unseen combinations. Thus support inference

provides a regularized probability estimation by only assigning probability mass to

observed combinations, and GFM takes this regularized probability estimation as the

input and outputs F optimal prediction, which could potentially be an unobserved

label combination. We observe this strategy to work remarkably well for many

classifiers and datasets. Our proposed solution is simple to implement and highly

effective.

Calibration. It is often the case that the probability estimations given by the

classifiers are uncalibrated, meaning that the probabilities do not align well with

the actual prediction accuracy. One can further calibrate these probabilities on

a validation set using some calibration method such as Isotonic Regression [98].

For each instance x in the validation set, we use support inference to generate

p(yl = 1, |y| = s | x), ∀l, s ∈ {1, ..., L}. Then for each (l, s) pair we train an isotonic

regression calibrator using the input scores p(yl = 1, |y| = s | x) and the regression

targets I[yl = 1, |y| = s |x] from all x in the validation set. When making predictions

50



CHAPTER 3. CONDITIONAL BERNOULLI MIXTURES

Table 3.2: Comparison between CBM+GFM and other methods in terms of F1 score.

‘-’ indicates failed runs with 56 core and 256GB RAM.

Method BIBTEX IMDB OHSUMED RCV1 WISE WIPO

BR+GFM 48.1 63.8 71.0 76.1 80.1 68.0

CRF+GFM 49.5 67.1 70.5 76.1 79.4 72.5

CBM+GFM 50.4 66.2 72.6 78.7 81.5 71.3

BR 39.8 59.6 63.6 73.8 72.8 69.5

CRF 46.5 63.0 66.4 74.4 77.7 70.3

CBM 45.3 62.2 69.5 77.3 79.8 69.6

LIFT 31.5 - 54.4 70.2 - 61.6

SPEN 39.0 61.1 61.7 65.3 - 65.9

PDsparse 40.7 62.3 67.3 75.0 74.5 67.5

CFT 23.5 - - 53.5 - 62.7

CLEMS 42.5 - 52.6 72.4 - 67.1

LSF 43.9 59.8 65.0 73.6 76.7 71.1

on the test set, we use the Isotonic regression calibrated probabilities. We find that

calibrating the L2 marginal probabilities produced by support inference helps GFM

make better predictions. Note that to speed up computation, many of the (l, s) pairs

can be safely skipped. See the discussion on GFM in Section 2.2 for more details.

3.7.2 Experiment Results

We test the proposed CBM+GFM method on several datasets (details of these

datasets are shown in Appendix A) and compare it with several baseline methods.

We adopt the given train/test split whenever it is provided; otherwise we use a

random 20% of the data as the test set. We regularize CBM with LR base learners

by elastic-net penalty λ{α||w||1 + (1− α)||w||22}, and we tune the overall strength λ

and the L1 ratio α. Experiment results are shown in Table 3.2.

First we compare two CBM prediction methods: predicting by maximum

probability (the “CBM” row in the table) vs. predicting with GFM (the

“CBM+GFM” row in the table). It is clear that plugging in GFM improves F1

score on all datasets. We did similar tests for BR and CRF and show that GFM

also helps BR and CRF (see BR vs. BR+GFM and CRF vs. CRF+GFM). Among

the three methods BR+GFM, CRF+GFM and CBM+GFM, our proposed method

CBM+GFM achieves the overall best performance.

Next we compare our algorithm to another approach which directly estimates
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the L2 probabilities required by the GFM algorithm, as suggested in [112], and we

shall refer to it as LSF. It may appear that if the end goal is to produce these L2

probabilities as input to the GFM algorithm, it should be more straightforward to

estimate these L2 probabilities directly rather than going through a joint estimation

p(y|x) first, which by itself is quite challenging (the joint evolves 2L probabilities in

general). We can estimate each p(yl = 1, |y| = s |x) using a binary logistic regression.

Another option is to estimate p(yl = 1|x) with a binary logistic regression, and

then p(|y| = s | x, yl = 1) with another multinomial logistic regression and then

multiply their probabilities. However, in practice, we observe that this direct

estimation approach does not perform well (see Table 3.2). Our speculation is that

directly predicting the number of relevant labels |y| by a classifier is a very hard

and unnatural task. Each category here (”matching s labels”) does not have a fixed

meaning, like sport or economy do in typical topical classification. As “matching

2 labels” can mean many different things, for example (sport, basketball) but

also (business, industry), it is hard to establish a relation between ”matching 2

labels” and feature representation. This is especially so for linear models like logistic

regression, where probabilities are monotonic functions of scores, which in turn are

monotonic functions of features. We believe having a joint estimation first and then

inferring these marginals from the joint is a more natural choice.

We also tested many other methods and found them to perform worse than

our proposed method. We describe these methods below and list their results in

Table 3.2.

The PD-Sparse method [124] is recently proposed for extremely large scale

multi-label classification. It employs a Dual Fully-Corrective Block-Coordinate

Frank-Wolfe algorithm that exploits both primal and dual sparsity to achieve high

efficiency. However, PD-Sparse only computes a non-probabilistic score for each label

and ranks labels by scores. It does not offer a straightforward way of predicting a

set of labels for each instance. The original implementation provided by the authors

ask the users to provide the desired number of labels per instance and returns the

top labels with highest scores as predictions. Because the correct number of labels

varies greatly from instance to instance, predicting a fixed number of labels for all

instances results in sometimes low precision (when the specified number of labels is

more than necessary), sometimes low recall (when the specified number of labels is

less than necessary), and overall low F1-measure. Since PD-Sparse does not provide

probability estimations, GFM cannot be plugged in to predict optimal F1. We tried

to make the PD-Sparse predictions more adaptive by tuning the threshold of the

label scores to maximize the F1-measure, but PD-Sparse still performs much worse

than our proposed methods.
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There are also several neural network based multi-label classification methods

[15, 81, 26, 79]. We run the code associated with the recently proposed Structured

Prediction Energy Networks (SPEN) [15] with carefully tuned hyper parameters

as suggested by the authors and observe that SPEN’s performance to be less

competitive, possibly due to over-fitting in high dimensional data with neural

network’s high model capacity. It is worth mentioning that GFM is recently applied

to convolutional neural networks to optimize F measure and the experiment confirms

that GFM gives better performance than simple thresholding [29].

The LIFT algorithm [128] constructs features specific to each label by

conducting clustering analysis on its positive and negative instances, and then

performs training and testing by querying the clustering results. We run the code

provided by the authors and follow the suggested hyper parameters. LIFT does not

perform well and could not finish on two datasets.

There are several approaches that seek to optimize the F-measure directly

during training. [91] provides an up-to-date overview on different F-measure

maximization methods. [90] uses a graph-cut algorithm and has poor scalability on

high dimensional text datasets. There are three methods that use a cost-sensitive

approach to optimize F-measure score during training [69, 54, 87]. We tested the

Condensed Filter Tree method (CFT) [69] and the cost-sensitive label embedding

with multidimensional scaling method (CLEMS) [54] and found both to perform

poorly and their training to be also slow. [42] studies F-measure maximization with

conditionally independent label subsets. This method has a strong assumption which

makes it hard to apply to real data.

3.8 Making Predictions to Optimize Hamming

Loss

3.8.1 Prediction with Marginals

There are cases when the predictions only depends on the marginal probabilities.

The theoretical results in [32, 61] show that the optimal prediction for Hamming

loss is achieved by thresholding each label probability independently at 0.5. It is

shown that Macro F1 and Micro F1 optimal inference also only depends on marginal

probabilities.

There are also multi-label tasks where the goal is not to produce a set of labels,

but rather, to rank all labels according to their relevance w.r.t. an instance, or to
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rank all instances according to their relevance w.r.t. the query label. Both tasks

only depends on the label marginal probability p(yl|x). Label ranking and instance

ranking are usually evaluated with MAP. For CBM, the marginal probability can be

easily computed as p(y�|x) =
∑K

k=1 π(z = k|x;α)b(y�|x;βk
� ), and thus CBM can be

readily used in tasks where marginal inference is needed.

3.8.2 Experiment Results

Here we focus on the set prediction task where the evaluation metric is Hamming

loss. We test CBM with independent predictions by thresholding marginals and

compare it with BR. Both CBM and BR use L2 regularized LR as base learners.

The results are shown in Table 3.3. Interestingly CBM also achieves slightly

better Hamming loss than BR on most of the datasets. Since both models make

independent predictions based on marginals, the improvement CBM achieves is

likely due to its increased model complexity which allows CBM to better estimate

marginals. Estimating marginal probabilities with mixture models has also been

reported to be effective in the large scale multi-label Youtube video classification

task [10].

Table 3.3: Comparison between CBM and BR in terms of Hamming loss

SCENE RCV1 TMC2007 MEDIAMILL NUSWIDE

CBM 0.0877 0.0137 0.0657 0.0298 0.0202

BR 0.1015 0.0143 0.0649 0.0309 0.0207

3.9 Comparison between Different CBM Predic-

tion Methods

In Sections 3.6, 3.7 and 3.8 we have derived three different CBM prediction methods

to optimize set accuracy, instance F1 and Hamming loss, respectively. For each

prediction method, we have tested it on real datasets and compared it with other

baselines. It would also be interesting to compare these three prediction methods

themselves. Unfortunately due to different experimental setups, the results from

previous sections are not directly comparable. In particular, CBM hyper parameters

were tuned w.r.t. different metrics which led to different CBM models. In this

section, we train only one CBM model (using L2 regularized LR as base learners) on

each dataset and then vary only the prediction methods. The results are summarized
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in Tables 3.4, 3.5, and 3.6. We can clearly see that the prediction method designed

to optimize a particular metric indeed achieves the best performance w.r.t. that

metric.

Table 3.4: Comparing different CBM prediction methods in terms of set accuracy

SCENE RCV1 TMC2007 MEDIAMILL NUSWIDE

set-accuracy optimized 0.6973 0.4986 0.2824 0.1306 0.2723

F1 optimized 0.5944 0.4830 0.2659 0.1029 0.2255

Hamming loss optimized 0.6279 0.4730 0.2724 0.1098 0.2578

Table 3.5: Comparing different CBM prediction methods in terms of F1 score

SCENE RCV1 TMC2007 MEDIAMILL NUSWIDE

set-accuracy optimized 0.7501 0.7577 0.6106 0.5070 0.3665

F1 optimized 0.7709 0.7682 0.6368 0.5786 0.4366

Hamming loss optimized 0.6762 0.7406 0.5993 0.5471 0.3685

Table 3.6: Comparing different CBM prediction methods in terms of Hamming loss

SCENE RCV1 TMC2007 MEDIAMILL NUSWIDE

set-accuracy optimized 0.0891 0.0138 0.0671 0.0343 0.0211

F1 optimized 0.1018 0.0139 0.0690 0.0329 0.0244

Hamming loss optimized 0.0877 0.0137 0.0657 0.0298 0.0202

Figure 3.8 provides a conceptual summary of different CBM prediction methods

designed for different metrics. In particular, to optimize Hamming loss and MAP

which are based on marginal probabilities alone, one has two options. The first

option is to infer the marginals from the joint estimated by CBM. The second option

is to directly estimate marginals using BR. One should note, however, the BR model

is not capable of optimizing set accuracy and F1, while CBM is capable of optimizing

all the metrics listed here.

3.10 Running Time

To facilitate wider comparison of different methods, we also report different

algorithms’ training time and prediction time measured in our experiments. We test

two versions of CBM: sparse CBM, which takes advantage of sparsity during training

to skip certain labels and training instances (as described in Section 3.5), and dense
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Figure 3.8: Different CBM prediction methods designed for different metrics.

CBM, which does not take advantage of sparsity during training. We use linear

learners for all algorithms to make results comparable. Our Java implementations of

BR, PowSet, CC, PCC, ECC, pairCRF and CBM are all multi-threaded. The CDN

implementation is taken from the MEKA package [6] without further modification.

Each experiment is conducted on a computer with Intel Xeon CPU E5-2690 v3

2.6GHz, 48 logical cores and 128GB of RAM. The timing results are in Table 3.7.

All numbers are in seconds and the predict time measures the time required to make

predictions on the entire test set. We can see in terms of speed, BR is the clear

winner. However, its poor accuracy makes its advantage in speed less attractive.

On datasets with a large number of possible subsets, CBM takes significantly less

training time compared with PowSet, while still achieving better accuracy. By

taking advantage of the sparsity, sparse CBM runs a few times faster than dense

CBM. We also notice that on a separate large dataset RCV1-2K (with 20X more

labels and 100X more instances than RCV1; see Appendix A for details), training a

sparse CBM with 50 components is even 3 times faster than training a BR model,

because with many components, each binary classifier training is done on a subset

of data within the component, and thus can be much faster. This is very promising

and shows that CBM not only is more powerful than BR, but also could be more

efficient than BR on large datasets. Training CBM on extremely large dataset is

beyond the scope of the this thesis and we leave it for future work.
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Table 3.7: Comparison between CBM and other methods in terms of training time

and prediction time. All numbers are in seconds.

dataset SCENE RCV1 TMC2007 MEDIAMILL NUSWIDE

Method Learner Train Predict Train Predict Train Predict Train Predict Train Predict

BR LR 2 <1 19 <1 26 <1 136 <1 128 1

PowSet LR 35 <1 3147 <1 38037 1 85794 1 521760 34

CC LR 3 <1 509 <1 332 <1 1949 1 2520 2

PCC LR 3 <1 509 3 332 1 1949 4 2520 27

ECC-label LR 22 <1 4915 27 3404 15 19642 38 25791 246

ECC-subset LR 22 <1 4915 26 3404 18 19642 39 25791 287

CDN LR 4 45 18417 213433 54253 596228 3126 6572 17941 41789

pairCRF linear 11 <1 2136 <1 215 <1 2990 <1 48404 7

(dense) CBM LR 70 <1 4412 4 1495 1 17608 13 35363 48

(sparse) CBM LR 24 <1 182 <1 393 <1 8862 5 15561 14

3.11 Conceptual Comparison with Related Meth-

ods

Modeling label dependencies has been long regarded as a central theme in multi-label

classification. Estimating the high-dimensional conditional joint p(y|x) is very

challenging and various approaches have been proposed to tackle this problem based

on different approximations.

Classifier Chains decomposes the joint probability p(y|x) into a product of

conditionals p(y1|x)p(y2|x, y1) · · · p(yL|x, y1, .., yL−1), based on the chain rule. This

reduces a multi-label learning problem to L binary learning problems, each of which

learns a new label given all previous labels. During prediction, finding the exact joint

mode is intractable. Classifier Chains (CC) [97] classify labels greedily in a sequence:

label y� is decided by maximizing p(y�|x, y1, .., y�−1), and becomes a feature to be

used in the prediction for label y�+1. This greedy prediction procedure has three

issues: 1) the predicted subset can be far away from the joint mode [33]; 2) errors

in early label predictions propagate to subsequent label predictions; 3) the overall

prediction depends on the chain order. To address the first two issues, Probabilistic

Classifier Chains (PCC) replace the greedy search strategy with some more accurate

search strategies, such as exhaustive search [24], ε-approximate search [34], Beam

Search [64, 65], or A* search [77]. To address the third issue, Ensemble of Classifier

Chains (ECC) [97] averages several predictions made by different chains, wherein

the averaging can take place at either the individual label level (ECC-label) or the

label subset level (ECC-subset). Using dynamic programming to find the optimal

chain order [73] has been proposed recently.
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A similar reduction method named Conditional Dependency Networks

(CDN) estimates p(y|x) based on full conditionals and Gibbs sampling [50].

During learning, one binary classifier is trained for each full conditional

p(y�|x, y1, .., y�−1, y�+1, ..., yL). During prediction, Gibbs sampling is used to find

the mode of the joint. The method’s major limitation is that it cannot handle

perfectly correlated or anti-correlated labels: consider binary classification as

multi-label problem with only 2 exhaustive and exclusive labels. A perfect model for

p(y1 = 1|x, y2) is 1−y2; in other words, the feature information is completely ignored.

The same applies to p(y2|x, y1). So the prediction will inevitably fail. In general,

Gibbs sampling may fail in the presence of perfect correlations or anti-correlations

since the resulting stochastic process is not ergodic; when relations are imperfect but

very strong, Gibbs sampling may need a very long time to converge.

The method in [43] factorizes labels into independent factors based on

some statistical conditional independence tests and a Markov boundary learning

algorithm. Its limitation, as pointed out by the authors, is that the statistical tests

are ineffective when the ratio between samples and labels is not big enough. Their

method outperforms the Power-Set baseline on synthetic datasets, but not on any

real dataset. [129] propose to use a Bayesian Network to encode the conditional

dependencies of the labels as well as the feature set, with the features as the common

parent of all labels.

Conditional Random Fields (CRF) [102] offer a general framework for

structured prediction problems based on undirected graphical models. In multi-label

classifications labels can form densely connected graphs, so restrictions are imposed

in order to make training and inference tractable. For problems involving only hard

label relations (exclusive or hierarchical), a special CRF model is proposed [35]; this

works only when label dependencies are strict and a priori known.

pair-CRF limits the scope of potential functions to label pairs, and does not

model higher order label interactions [44]. The exact inference and prediction in

pair-wise CRF requires checking all possible label subsets, which is intractable for

datasets with many labels. As shown in their experiment results, the most effective

way of doing approximate inference and prediction is to consider only label subsets

that occur in the training set. But this eliminates the possibility of predicting unseen

subsets. Our CBM model does not have this limitation (see Section 3.6).

There are also algorithms which exploit label structures but do not esti-

mate p(y|x) explicitly. Examples include Multi-label k-Nearest Neighbors [130],

Compressed Sensing based method [53], Principle Label Space Transforma-

tion [104], Conditional Principal Label Space Transformation [23] and Compressed
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Labeling [132].

Various mixture models exist for multi-label document classification or

supervised topical modeling [75, 109, 74, 122, 96, 94, 60]. Our CBM model differs

from these models in two aspects: 1) These models are generative in nature, i.e.,

they model p(x), where x is typically a bag-of-words representation of a document.

By contrast, our CBM is purely discriminative, since it targets p(y|x) directly. The
principled advantage of discriminative approach over generative approach, as stated

in [103], is that the former does not make overly simplistic independence assumptions

among features, and is thus better suited to including rich, overlapping features.

2) Most of these models are designed specifically for text data, while our method

can be applied to any multi-label classification problem. A Conditional Multinomial

Mixture model has been proposed for Superset Label Learning [72].

The architecture of CBM also mimics that of Mixture of Experts (ME) [56, 58],

in which a gate model divides the input space into disjoint regions probabilistically

and an expert model generates the output in each region. ME has been mainly used

in regression and multi-class problems [126]. CBM can be viewed as a multi-label

extension of ME with a particular factorization of labels inside each expert.

3.12 Discussion and Future Work

3.12.1 CBM with Shared Parameters

While the CBM model as in Equation (3.4) is flexible, it may not be very efficient in

parameterization because each component is forced to use its own set of parameters

by setting b(yl|z = k,x;βl) = b(yl|x;βk
l ). Recall that during training, each binary

classifier in component k is trained using only data within the (soft) component k. If

the number of components is large and the total number of instances is small, each

component may only get a small number of the training instances and thus we might

not be able to estimate the binary classifier very well. Take object detection as an

example. Each component in CBM may correspond to a different image scene/topic

(see Figure 3.2 for an illustration). Without parameter sharing, we will need to

build a human detector inside the kitchen scene, and another human detector inside

the street scene, and another human detector inside the sports scene, and so on. It

could be true that a human playing football may look somewhat differently than a

human working in the kitchen, they still share many similarities. Training separate

human detectors in each scene may lead to a data scarcity problem. To alleviate this

problem, we can instead write the component indicator as a binary vector z with
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k-th bit being 1, concatenate z with x and train a binary classifier on augmented

features (x, z).

p(y|x) =
K∑
k=1

π(zk = 1|x;α)
L∏

�=1

b(y�|x, z;β�), (3.10)

The model is not forced to use different parameters for the same label classifier in

different components. This new and more general formulation allows the model to

share some parameters. The amount of parameter sharing depends on the concrete

instantiation of the binary classifiers. Nonlinear classifiers such as neural networks

and boosted trees can arbitrarily combine x and z. They can potentially first find

patterns that apply to all components and then make small adjustments inside each

component.

We now consider how to train such a model. We denote with ek the binary

vector of length K with the k-th bit being one. The E step and the update for the π

remain the same. The update for binary classifiers becomes: for l = 1, 2, ..., L

βl ← argmin
β�

K∑
k=1

N∑
n

γk
n log b(ynl|xn, z = ek;βl) (3.11)

Conceptually, we have KN instance feature vectors of the form (xn, z = ek),

and each instance has an associated weight γk
n and we need to solve a weighted

maximum likelihood problem. Implementing this idea directly would require

creating K different copies of x, each concatenated with a different z. This naive

implementation is clearly quite inefficient in both training time and memory

consumption. We will need to develop some tricks to avoid this. Interestingly, if

one uses a linear model for b(y�|x, z;β�), the training can be greatly simplified – no

explicit concatenation of x and z is required in the implementation.

For logistic regression learners:

b(Ynl = 1|xn, z) =
1

1 + exp{−(
∑

d w
d
l x

d
n +

∑
k c

k
l z

k + c0l )}

The gradient is easy to compute: Let Jl =
∑K

k=1

∑N
n γk

n log b(ynl|xn, z;wl, cl), then

∂Jl
∂wd

l

=
∑
n

ynlx
d
n −

∑
n

xd
nEnl

∂Jl
∂ckl

=
∑
n

ynlγ
k
n −

∑
n

γk
nb(Ynl = 1|xn, z = ek)
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where

Enl =
∑
k

γk
np(Ynl = 1|xn, z = ek)

The training complexity is (roughly) O(NL(D +K)), where N is the number

of instances, L number of labels, D number of features, K number of components.

As a comparison, the original (dense) CBM without parameter sharing has the

complexity O(NLDK). Typically K << D. It is clearly that in CBM with shared

parameters, increasing the number of components no more leads to a linear increase

in the training time. This is the main advantage of parameter sharing.

The disadvantage is that using linear classifiers leads to the most strict and

least flexible parameter sharing: the overall scoring function
∑

d w
d
l x

d +
∑

k c
k
l z

k + c0l
shows that we essentially have a fixed label detector

∑
d w

d
l x

d that provides a

matching score between the instance x and the label l, one global bias c0l that

encodes the global prior probability of the label, and a component specific bias ckl
that encodes the prior probability of that label appearing in the component. This

model can represent shared (component-independent) patterns through the label

detector function, but cannot make complicated adjustment inside each component.

All it can do is to add some fixed score or subtract some fixed score.

Despite its limited modeling power, this does suggest to us some interesting

ways to think about label dependencies. In object detection, many labels, such as

dinner table or car, look pretty consistently across scenes/components. In this

case, we can basically use one fixed detector
∑

d w
d
l x

d for a label across all scenes.

Dining tables appear frequently in the dinning room scene, and thus the label dining

table will get a high positive bias ckl (a high prior) in the component that represents

the dining room. The label car, however, will get a negative bias ckl (a low prior) in

the dining room component. Now assuming that we have an image which seems to

contain a blurry table or some parts of a table. CBM will first (probabilistically)

map the image to a scene using the π classifier based on all the features. Assuming

there is some clear evidence such as folks, foods, chairs, and fridge (which themselves

could also be labels to be predicted – and they are indeed easily predictable in this

case) and the image is correctly mapped to the dining room scene, then the binary

classifier will add some extra positive score ckl to the original (possibly low) score∑
d w

d
l x

d for dining table, and thus boosts its chance of being predicted. And it

can also deduct a lot of score for car, decreasing the chance of car being predicted.

This example shows that even if CBM uses a restricted parameterization and is

only allowed to adjust the label prior probabilities in each component, it can still

capture label dependencies. The dependency estimation is not done directly – by
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Figure 3.9: CBM with dense structure vs. CBM with sparse structure vs. CBM

with hierarchical structure. From left to right: CBM, sparse CBM, and hierarchical

sparse CBM. Mixture components are the leafs; dashed arrows represent binary label

classifiers; solid arrow are labels always predicted in the component. Missing arrows

indicate labels never predicted in the component.

estimating which set of labels tend to co-occur and which ones not; but rather, done

indirectly – by clustering labels into scenes and memorizing which labels tend to

occur in which scenes. We observe that on real datasets, most of the labels only

occur in a few scenes. And this property can be explored to design a sparse CBM

structure, as we have described in Section 3.5. Such clustering of labels must also be

realizable by features – the π classifier should be able to send the instance to the

right cluster(s) based on its features. Such clustering happens in the EM training

procedure, where both label information and feature information are considered.

To fully utilize the power of parameter sharing, and allow the model to make

more sophisticated adjustments in each component, in the future, we would like

to develop an efficient training procedure for CBM with shared non-linear binary

learners.

3.12.2 CBM with Hierachical Structures

Another training complexity reduction idea worth considering is to use a hierarchical

mixture structure as opposed to the current flat mixture structure. If we view

sparse CBM as a depth 1 probabilistic tree, then to make a prediction for each

instance, we have to compute its probability of reaching each leaf node (i.e., the

mixture coefficient), which requires evaluating a large multinomial classifier. If we

use a hierarchical CBM, which can be viewed as a deep probabilistic tree, then

each prediction requires evaluating some small multinomial (or binary if the tree is

binary) classifiers. The hope is that many branches with low contribution can be

pruned early in the evaluation process and only a small number of classifiers are
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actually evaluated. See Figure 3.9 for a demonstration. This looks similar to the

tree based methods for extreme multi-label classification. But our approach uses

probabilistic tree splits as opposed to the hard tree splits, and provides probabilistic

inference necessary for many downstream tasks (such as F1 optimization). If labels

are almost independent, traditional tree based classifiers become very inefficient in

representation, while our model with dedicated binary label classifiers will not have

this issue. Note that using a hierarchical structure in CBM does not mean the labels

have to form a hierarchy themselves.
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Chapter 4

Calibrate and Rerank Multi-label

Predictions

In the previous chapter, we have described CBM, a probabilistic model designed

to capture label dependencies by directly estimating the joint distribution. In this

chapter, we introduce a completely different approach to multi-label classification

called BR-rerank. It consists of a BR model which only estimates marginal label

probabilities, and a calibrator model which takes as input these marginals as well

as other properties of the label set to produce a calibrated confidence for the label

set. The calibrator captures label dependencies missed by the BR model and is

able to rerank BR’s predictions. Compared to standard BR, BR-rerank gives both

better predictions and better confidence estimations. Similar to CBM, BR-rerank is

a reduction methods: it transforms a multi-label classification problem to a series of

binary classification problems and a regression/calibration problem.

4.1 Binary Relevance and its Drawbacks

The simplest approach to multi-label classification is to apply one binary classifier

(e.g., binary logistic regression or support vector machine) to predict each label

separately. This approach is called binary relevance (BR) [107] and is widely used

due to its simplicity and speed. BR’s training time grows linearly with the number

of labels, which is considerably lower than many methods that seek to model label

dependencies, and this makes BR run reasonably fast on commonly used datasets.

(Admittedly, BR may still fail to scale to datasets with extremely large number of

labels, in which case specially designed multi-label classifiers with sub-linear time
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complexity should be employed instead. But in this thesis, we shall not consider

such extreme multi-label classification problem.)

BR has two well-known drawbacks. First, BR neglects label dependencies and

this often leads to prediction errors: some BR predictions are incomplete, such

as tagging cat but not animal for an image, and some are conflicting, such as

predicting both the code Pain in left knee and the code Pain in unspecified

knee for a medical note. Second, the confidence score or probability (we shall use

“confidence score” and “probability” interchangeably) BR associates to its overall

set prediction y is often misleading, or uncalibrated. BR computes the overall set

prediction confidence score as the product of the individual label confidence scores,

i.e., p(y|x) = ∏L
l=1 p(yl|x). This overall confidence score often does not reflect reality:

among all the set predictions on which BR claims to have roughly 80% confidence,

maybe only 60% of them are actually correct (a predicted set is considered “correct”

if it matches the ground truth set exactly). Having such uncalibrated prediction

confidence makes it hard to integrate BR directly into a decision making pipeline

where not only the predictions but also the confidence scores are used in downstream

tasks.

In this chapter, we seek to address these two issues associated with BR. We

first improve the BR set prediction confidence scores through a feature-based post

calibration procedure to make confidence scores indicative of the true set accuracy.

The features considered in calibration capture label dependencies that have otherwise

been missing in standard BR. Next we improve BR’s set prediction accuracy by

reranking BR’s prediction candidates using the new calibrated confidence scores.

There exist multi-label methods that avoid the label independence assumption from

the beginning and perform joint probability estimations [97, 24, 64, 44, 35, 68]; such

methods often require more complex training and inference procedures. In this thesis

we show that BR base model together with our proposed post calibration/reranking

makes accurate set predictions on par with (or better than) these state-of-the-art

multi-label methods —yet calibrated, simpler, and faster.

4.2 Calibrate BR Multi-label Predictions

We first address BR’s confidence mis-calibration issue. There are two types of

confidence scores in BR: the confidence of an individual label prediction p(yl|x),
and the confidence of the entire predicted set p(y|x). In this work we take for

granted that the individual label scores have already been calibrated, which can

be easily done with established univariate calibration procedures such as isotonic
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regression [98] or Platt scaling [127, 92]. We are concerned here with the set

confidence calibration; note that calibrating all individual label confidence scores

does not automatically calibrate set prediction confidence scores.

4.3 Evaluation Metrics for Confidence Calibration

To describe our calibration method, we need the following formal definitions:

• c(y) ∈ [0, 1] is the confidence score associated with the set prediction y;

• v(y) ∈ {0, 1} is the 0/1 correctness of set prediction y;

• e(c) = p[v(y) = 1|c(y) = c] is the average set accuracy among all predictions

whose confidence is c. In practice, this is estimated by bucketing predictions based

on confidence scores and computing the average accuracy for each bucket.

We use the following standard metrics for calibration [63]:

• Alignment error, defined as Ey[e(c(y)) − c(y)]2, measures, on average over all

predictions, the discrepancy between the claimed confidence and the actual accuracy.

The smaller the better.

• Sharpness, defined as Vary[e(c(y))], measures how widely spread the confidence

scores are. The bigger the better.

• The mean squared error (MSE, also called Brier Score), defined as Ey[(v(y)−c(y))2],

measures the difference between the confidence and the actual 0/1 correctness. It

can be decomposed into alignment error, sharpness and an irreducible constant

“uncertainty” due to only classification error (not calibration error) [63]:

Ey[(v(y)− c(y))2]︸ ︷︷ ︸
MSE

=Vary[v(y)]︸ ︷︷ ︸
uncertainty

−Vary[e(c(y))]︸ ︷︷ ︸
sharpness

+Ey[(e(c(y))− c(y))2]︸ ︷︷ ︸
alignment error

(4.1)

Alignment error and sharpness capture two orthogonal aspects of confidence

calibration. A small alignment error implies that the confidence score is well aligned

with the actual accuracy. However, small alignment error, alone, is not meaningful:

the calibration can trivially achieve zero alignment error while being completely

uninformative by assigning to all predictions the same confidence score, which is the

average accuracy among all predictions on the dataset. A useful calibrator should

also separate good predictions from bad ones as much as possible by assigning

very different confidence scores to them. In other words, a good calibrator should

simultaneously minimize alignment error and maximize sharpness. This can be

achieved by minimizing MSE, thus MSE makes a natural objective for calibrator
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training. Minimizing MSE leads to a standard regression task: one can simply

train a regressor c that maps each prediction y to its binary correctness v(y).

Note that training a calibrator by optimizing MSE does not require estimation of

e(c(y)), but evaluating its sharpness and alignment error does. Estimating e(c(y))

by bucketing predictions has some subtle issues, as we shall explain later when we

present evaluation results in Section 4.6.

4.4 Features for Calibration

Besides the training objective, we also need to decide the parametric form of the

calibrator and the features to be used. In order to explain the choices we make, we

shall use the calibration on WISE dataset [7] as a running example.

Let us start by visualizing BR’s predictions together with its original set

prediction confidence calculated as p(y|x) = ∏L
l=1 p(yl|x), in which the individual

label probabilities p(yl|x) have been well-calibrated by standard isotonic regression

procedures. We group about every 100 predictions with similar confidence scores

into a bucket, and plot those buckets as dots treating the average confidence in the

group as the x-coordinate and treating the average prediction accuracy in the group

as the y-coordinate1. Figure 4.1a shows that the set confidence scores computed

this way are not calibrated even when the individual label confidence scores have

been well-calibrated. Well calibrated set predictions should approximately lie on the

diagonal line. In the figure, predictions above the diagonal are under-confident and

those below the diagonal are over-confident.

The simplest way to improve the alignment is to fit another isotonic regression

to these dots (see Figure 4.1c), and use the regression outputs as the new calibrated

set prediction confidence scores (Figure 4.1d). This additional calibration makes the

dots align with the diagonal much better. Quantitatively, the alignment error has

been reduced to a small number. However, as mentioned earlier, having a small

alignment error alone is not enough, as a trivial calibrator that outputs a constant

would achieve zero alignment error (Figure 4.1b). One would also need to maximize

the sharpness of the scores, by assigning very different scores to good predictions

and bad predictions. Figure 4.2a and 4.2c show that there are features that can help

the calibrator better separate good predictions from bad ones.

1This particular way of bucketing is only for visualization purpose; when we evaluate calibration

quantitatively we follow the standard practice of using 10 equal-width buckets.
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(a) (b)

(c) (d)

Figure 4.1: Trivial calibration and isotonic regression calibration on the WISE

dataset. In all sub-figures, each dot represents a group of 100 set predictions with

similar confidence scores. The average confidence score in the group is used as x-

coordinate, and the average prediction accuracy is used as y-coordinate. (a) BR

predictions with the original BR confidence scores. (b) Trivial calibration that gives

all predictions the same confidence score which is the overall set accuracy on the

dataset. (c) Isotonic regression (the solid line) trained on all predictions. (d) Predic-

tions with isotonic regression calibrated confidence. To simplify the presentation, all

calibrators are trained and evaluated on the same data.
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(a) (b)

(c) (d)

Figure 4.2: Cardinality and prior based isotonic regression calibrations on the WISE

dataset. In all sub-figures, each dot represents a group of 100 set predictions with

similar confidence scores. The average confidence score in the group is used as x-

coordinate, and the average prediction accuracy is used as y-coordinate. (a) Break

down all predictions by the set cardinality and train a separate isotonic regression

(the solid line) for each cardinality. (b) Predictions with confidence calibrated by

cardinality-based isotonic regressions. (c) Group all predictions into 3 categories

by the popularity (prior probability) of predicted label combination in the training

data ground truth (popular=the predicted label combination appears at least 100

times; rare=the predicted label combination appears less than 100 times; new=the

predicted label combination does not appear at all in training data), and train a

separate isotonic regression (the solid line) for each category. (d) Predictions with

confidence calibrated by prior-based isotonic regressions. To simplify the presentation,

all calibrators are trained and evaluated on the same data.
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Figure 4.2a breaks down all predictions by the cardinality of the predicted

set (i.e., the number of labels predicted). If we look at all predictions with

uncalibrated confidence around 0.7, their average accuracy is around 0.58 (as shown

in Figure 4.1c). However, Figure 4.2a shows that those singleton predictions have

accuracy around 0.8; those predictions containing 2 labels only have accuracy about

0.54; and those empty set predictions have 0 accuracy (on this particular dataset,

the ground truth set is always non-empty). Clearly, predictions with different

cardinalities require different calibration mappings from the uncalibrated confidence

to the actual accuracy. Fitting a separate isotonic regression for each cardinality

results in Figure 4.2b, which is a clear improvement over the calibration without

cardinality (Figure 4.1d); thus the cardinality feature greatly increases sharpness

and reduces MSE. Visually, more points have moved towards left and right ends.

Another useful feature is the popularity of predicted label set in the training

data (i.e., prior probability). Between two predictions with the same uncalibrated

BR confidence, the one that is more popular often has a higher chance of being

correct, as shown in Figure 4.2c. One can discretize the prior probabilities into

intervals and train separate isotonic regressions for different intervals. Figure 4.2d

shows that this also performs better than having only one isotonic regression.

Both set cardinality and prior probability are features defined on the whole

label set, rather than individual labels. Such features capture constraints and

dependencies among labels, which were not originally considered by BR. Therefore

these features supplement BR’s own prediction score and allow the calibrator to

make better overall judgments on the predicted set. There can be other features that

help the calibrator better judge set predictions. In order to incorporate arbitrary

number of features and avoid manual partitioning of the data and training separate

calibrators (which quickly becomes infeasible as the number of features grows), a

general multi-variate regressor should be employed. The multi-variate extension of

isotonic regression exists [99], but it is not well suited to our problem because some

features such as cardinality do not have a monotonic relationship with the calibrated

confidence (see Figure 4.2a). [63] proposes KNN and regression trees as calibrators

for general structured prediction problem.

4.5 Gradient Boosting as a Calibrator

In this work, we choose Gradient Boosted Trees (GB) [40] as the calibrator model.

Similar to regression trees, GB as a multi-variate regressor automatically partitions

the prediction’s feature space into regions and outputs (approximately) the average
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prediction accuracy in each region as the calibrated confidence score. GB often

produces smoother output than trees and generalizes better. GB is also very powerful

in modeling complex feature interactions automatically by building many trees on

top of the features. To leverage its power we also use the binary representation of

the set prediction y itself as features for GB. This way GB can discover additional

rules concerning certain label interactions that are not described by the manually

designed features (for example, “if two conflicting labels A and B are both predicted,

the prediction is never correct, therefore lower the confidence score”). It is also

possible to use instance features x during calibration, but we do not find it helpful

because BR was already built on x.

There are two commonly used GB variants [40]. The first variant, GB-MSE

(Algorithm 2.5), uses the tree ensemble score as the output, and MSE as the

training objective. The second variant, GB-KL (Algorithm 2.6), adds a sigmoid

transformation to the ensemble score and uses KL-divergence as the training

objective. GB-MSE has the advantage of directly minimizing MSE, which matches

the evaluation metric used for calibration (see section 4.3). But it has the

disadvantage that its output is not bounded between 0 and 1 and one has to clip its

output in order to treat that as a confidence score.

GB-KL has the advantage of providing bounded output, but its training

objective does not directly match the evaluation metric used for calibration; note,

however, that minimizing KL-divergence also encourages the model output to match

the average prediction accuracy, hence achieves the calibration effect. It may appear

that one could get the best of both worlds by having sigmoid transformation and

MSE training objective at the same time. Unfortunately, adding sigmoid makes

MSE a non-convex function of the ensemble scores, thus hard to optimize. In this

chapter, we choose GB-MSE as our GB calibrator and shall simply call it GB from

now on. In Appendix E, we show that GB-KL has very similar performance.

Each BR set prediction is transformed to a feature vector (containing original BR

confidence score, set cardinality, set prior probability, and set binary representation)

and the binary correctness of the prediction is used as the regression target. Since

the goal of GB calibrator is to objectively evaluate BR’s prediction accuracy, it is

critical that the calibration data to be disjoint from the BR classifier training data.

Otherwise, when BR over-fits its training data, the calibrator will see over-optimistic

results on the same data and learn to generate over-confident scores. Similarly, it is

also necessary to further separate the label calibration data and the set calibration

data, since the product of the calibrated label probabilities is used as input to the

set calibrator training. The whole calibrator training procedure is summarized in

Algorithm 4.1.
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Algorithm 4.1 Gradient Boosting Calibrator Training

Input: calibration dataset {(xn,yn)}Nn=1 together with BR’s predictions ŷn, n =

1, 2, ..., N .

1: for n = 1, 2, ..., N do

2: create feature vector un from ŷn and binary label vn = I[ŷn = yn]

3: end for

4: run Algorithm 2.5 on dataset {(un, vn)}Nn=1 to produce GB model F

Output: final GB model F

Imposing partial monotonicity. Imposing monotonicity is a standard practice

in univariate calibration methods such as isotonic regression [98] and Platt

scaling [127, 92] as it avoids over-fitting and leads to better interpretability.

Imposing (partial) monotonicity for a multi-variate calibrator is more challenging.

Certain features considered in calibration are expected to be monotonically related

to the confidence. For example, the confidence should always increase with the

popularity (prior probability) of the predicted set, if all other features of the

prediction are unchanged. The same is true for BR score. The rest of the features,

including the cardinality of the set and the binary representation of the set, do

not have monotonic relations with confidence. Therefore the calibration function

is partially monotonic. We have done additional experiments on imposing partial

monotonicity for the GB calibrator but did not observe significant improvement

(details and experiment results are in Appendix E).

4.6 Experiment Results on Calibration

We test the proposed GB calibrator for BR set predictions on 6 commonly used

multi-label datasets (see Appendix A for details). Each dataset is randomly split into

training, calibration, validation and test subsets. BR model with logistic regression

base learners is trained on training data; isotonic regression label calibrators and

GB set calibrators are trained on (different parts of) calibration data. All hyper

parameters in BR and calibrators are tuned on validation data. Calibration results

are reported on test data.

For comparison, we consider the following calibrators:

• uncalib: use the uncalibrated BR probability as it is;

• isotonic: calibrate the BR probability with isotonic regression;

• card isotonic: for each label set cardinality, train one isotonic regression;
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• tree: use the features considered by GB, train a single regression tree.

To make a fair comparison, for all methods, individual label probabilities have

already been calibrated by isotonic regressions. We focus on their abilities to

calibrate set predictions. BR prediction is made by thresholding each label’s

probability (calibrated by isotonic regression) at 0.5. This corresponds to the set

with the highest BR score.

The evaluation metrics we use are MSE, sharpness and alignment error, as

described in Section 4.3. Following the standard practice, we use 10 equal-width

buckets to estimate sharpness and alignment error. One issue with evaluation by

bucketing is that using different number of buckets leads to different estimations of

alignment error and sharpness (but not MSE and uncertainty, whose computations

do not depends on bucketing). In fact, increasing the number of buckets will

increase both the estimated alignment error and sharpness by the same amount,

due to Eq 4.1. Using 10 buckets often produces negligible alignment error (relative

to MSE), and the comparison effectively focuses on sharpness. This amounts to

maximizing sharpness subject to a very small alignment error [46], which is often a

reasonable goal in practice. All calibrators are able to achieve small alignment error

(on the order of 10−3 and contributing to less than 10% of the MSE), so we do not

report that. The results are summarized in Table 4.1. All calibrators improve upon

the BR uncalibrated probabilities. Our GB calibrator achieves the overall best MSE

and sharpness calibration performance, due to use of additional features extracted

from set predictions.

Table 4.1: BR prediction calibration performance in terms of MSE (the smaller the

better) and sharpness (the bigger the better). Bolded numbers are the best.

Dataset uncertainty
uncalib isotonic card isotonic tree GB

MSE sharp MSE sharp MSE sharp MSE sharp MSE sharp

BIBTEX 0.139 0.193 0.007 0.140 0.002 0.109 0.038 0.086 0.065 0.068 0.072

OHSUMED 0.232 0.226 0.015 0.221 0.013 0.182 0.051 0.211 0.039 0.189 0.047

RCV1 0.247 0.175 0.077 0.175 0.075 0.159 0.093 0.134 0.129 0.123 0.126

TMC 0.212 0.192 0.019 0.192 0.020 0.192 0.022 0.194 0.029 0.180 0.032

WISE 0.249 0.252 0.017 0.234 0.017 0.151 0.098 0.166 0.093 0.147 0.102

MSCOCO 0.227 0.158 0.075 0.151 0.075 0.150 0.076 0.163 0.070 0.143 0.083
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4.7 Reranking Multi-label Predictions with

Calibrated Confidence

(a) (b)

Figure 4.3: Two example images from the MSCOCO datasets on which BR-rerank

corrects BR’s predictions. For (a), BR-rerank adds the correct label baseball glove

to BR’s predictions. For (b), BR-rerank removes the incorrect label toothbrush from

BR’s predictions.

Now we aim to improve BR’s prediction accuracy, by fixing some of the prediction

mistakes BR made due to ignoring label dependencies. Our solution is based on

the calibrator we just developed. Traditionally, the only role of a calibrator is to

map an uncalibrated confidence score to a calibrated confidence score. In that sense

the calibrator usually does not affect the classification, only the confidence. In fact,

popular univariate calibrators such as isotonic regression and Platt scaling implement

monotonic functions, thus preserve the ranking/argmax of predictions. For our

multi-variate GB calibrator, however, this is not the case. Even if we constrain the

calibrated confidence to be monotonically increasing with the BR prediction scores,

there are still other features that may affect the ranking; in particular the argmax

predictions before and after calibration might be different y sets. If indeed different,

the prediction based on calibrated confidence takes into account label dependencies

and other constraints (which BR does not), and is more likely to be the correct set

(even when the calibrated confidence is not very high in absolute terms). Therefore

we can also use GB as a multi-label wrapper on top of BR to rerank its predictions.

We name this method as BR-rerank . Figure 4.3 shows two example images from
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Table 4.2: The two-stage BR-rerank predictions on the two example images in Fig-

ure 4.3. For each example image, the left column of the table shows the top-5

set prediction candidates generated by BR. The middle column shows the uncali-

brated BR confidence score. The right column shows the calibrated BR-rerank confi-

dence score. For Figure 4.3a: BR predicts the incorrect set {person,baseball bat}
with confidence 0.58. BR-rerank predicts the correct set {person, baseball bat,

baseball glove} with confidence 0.17. For Figure 4.3b: BR predicts the incorrect

set {person, remote, toothbrush} with confidence 0.70. BR-rerank predicts the

correct set {person, remote} with confidence 0.18.

Prediction on Figure 4.3a

y candidates BR score BR-rerank score

person, baseball bat 0.58* 0.16

person, baseball bat, baseball glove 0.35 0.17*

person, handbag, baseball bat 0.02 0.04

person, sports ball, baseball bat 0.02 0.08

person, handbag, baseball bat, baseball glove 0.01 0.03

Prediction on Figure 4.3b

y candidates BR score BR-rerank score

person, remote, toothbrush 0.70* 0.16

person, remote 0.24 0.18*

person, toothbrush 0.03 0.05

person 0.01 0.02

person, tennis racket, remote, toothbrush 0.01 0.01

the MSCOCO datasets on which BR-rerank corrects BR’s predictions. Table 4.2

compares the BR scores with the BR-rerank scores on these two examples.

BR-rerank uses a two stage prediction pipeline. For each test instance x, we

first list the top K label set candidates y by highest BR uncalibrated scores. This

can be done efficiently using a dynamic programming procedure (Algorithm 4.2)

which takes advantage of the label independence assumption made in BR. Although

the label independence assumption does not hold in practice, we find empirically

that when K is reasonably large (e.g., K = 50), the correct y is often included in

the top-K list. The chance that the correct answer is included in the top-K list is

commonly called “oracle accuracy”, and it is an upper bound of the final prediction

accuracy. Empirically, we observe the oracle accuracy to be much higher than the

final prediction accuracy, indicating that the candidate generation stage is not a
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bottleneck of final performance.

Prediction stage two: send the top set candidates with their scores and

additional features to the GB calibrator, and select the one with the highest

calibrated confidence as the final prediction. The calibrator has to be trained on

more than top-1 BR candidates (on a separate calibration dataset) to evaluate

correctly prediction candidates, so we train the GB calibrator on top-K candidates.

Figure 4.4 illustrates the BR-rerank prediction on the test example in Figure 4.3b,

showing the BR marginal probabilities and the features extracted from the candidate

sets.

Algorithm 4.2 Generating the K-best prediction candidates from BR

1: Input: instance x and a BR classifier

2: Compute individual label probabilities based on BR: pl = p(yl = 1|x), l =

1, 2, ..., L

3: Initialize an empty priority queue Qk, and empty list C and an empty label set

ybest

4: for � = 1, 2, ..., L do

5: if pl > 0.5 then

6: add l to ybest

7: end if

8: end for

9: Qk.enqueue(ybest)

10: while |C| < K do

11: y = Qk.dequeue()

12: add y to C

13: for � = 1, 2, ..., L do

14: Generate y′ by flipping the �-th bit of y

15: if y′ has not been added to Q before then

16: Qk.enqueue(y′)
17: end if

18: end for

19: end while

20: Output: C
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p(person|x) = 0.99

p(baseball bat|x) = 0.99

p(baseball glove|x) = 0.37

p(handbag|x) = 0.03

p(sports ball|x) = 0.03

p(bench|x) = 0.01

p(bear|x) = 0.00

p(bottle|x) = 0.00

· · ·
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Figure 4.4: BR-rerank prediction details for the input test image. The “marginal”

column shows the individual label probabilities estimated by BR. Note that the label

baseball glove has a probability below the 0.5 threshold, and therefore will not

be included in BR’s predictions. The “set prediction candidates” column shows the

top-5 set prediction candidates with the highest BR scores generated by dynamic

programming based on BR marginals. The “set prediction features” column shows,

for each set candidate, its BR score, its binary encoding, its cardinality and its prior

probability. The “reranker score” column shows the calibrated BR-rerank confidence

score for each set prediction candidate. For this image, BR predicts the incorrect set

{person,baseball bat} with confidence 0.58. BR-rerank predicts the correct set

{person, baseball bat, baseball glove} with confidence 0.17.

4.8 Conceptual Comparison with Related Multi-

label Classifiers

Although the proposed BR-rerank classifier has a very simple design, it has some

advantages over many existing multi-label classifiers. Here we make some conceptual

comparisons between BR-rerank and related multi-label classifiers.
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BR-rerank can be seen as a stacking method in which a stage-1 model provides

initial estimations and a stage-2 model uses these estimations as input and makes

the final decision. There are other stacking methods proposed in the literature, and

the two most well-known ones are called 2BR [47, 106] and DBR [80]. The stage-1

models in 2BR and DBR are also BR models just as in BR-rerank. The stage-2

models in 2BR and DBR work differently. In 2BR, the stage-2 model predicts

each label � with a separate binary classifier which takes as input the original

instance feature vector x as well as all label probabilities predicted by the stage-1

model. In DBR, the stage-2 model predicts each label � with a separate binary

classifier which takes as input the original instance feature vector x as well as the

binary absence/presence information of all other labels. The absence/presence of

label � itself is not part of the input to avoid learning a trivial mapping. During

training, the absence/presence information is obtained from the ground truth; during

prediction, it is obtained from the stage-1 model’s prediction. Clearly for DBR there

is some inconsistency on how stage-2 inputs are obtained. BR-rerank and 2BR do

not suffer from such inconsistency. All three stacking methods BR-rerank, 2BR,

and DBR try to incorporate label dependencies into final classification. However,

both 2BR and DBR have a critical flaw: when their stage-2 models make the final

decision for a particular label, they do not really take into account the final decisions

made for other labels by the stage-2 model; they instead only consider the initial

estimations on other labels made by the stage-1 model, which can be quite different.

As a result, the final set predictions made by 2BR and DBR may not respect

the label dependencies/constraints these models have learned. By contrast, the

stage-2 model in BR-rerank directly evaluates the final set prediction (based on its

binary representation and other extracted features) to make sure that the final set

prediction satisfies the desired label dependencies/constraints. For example, in the

RCV1 dataset, each instance has at least one label. But DBR predicted the empty

set on 6% of the test instances. By contrast, BR-rerank never predicted empty set

on this dataset.

Many multi-label methods avoid the label independence assumption made in

BR and model the joint distribution p(y|x) in more principled ways. Examples

include Conditional Random Fields (CRF) [44], Conditional Bernoulli Mixtures

(CBM) [68], and Probabilistic Classifier Chains (PCC) [97, 24, 64, 73]. Despite

the joint estimation formulation, CRF, CBM, and PCC in practice often produce

over-confident set prediction confidence scores, due to overfitting. Their prediction

confidence must also be post-calibrated. Figure 4.5 compares BR, BR-rerank and

CBM in terms of prediction confidence calibration on the MSCOCO dataset. As

we can see from the plots, BR prediction scores are under-confident, BR-rerank

prediction scores are well-calibrated, and CBM prediction scores are over-confident.
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Figure 4.5: Comparison between BR, BR-rerank and CBM in terms of confidence

calibration on MSCOCO test dataset. Each dot represents a group of 100 set pre-

dictions with similar confidence scores. The average confidence score in the group is

used as x-coordinate, and the average prediction accuracy is used as y-coordinate.

The pair-wise CRF model [44] captures pairwise label interactions by estimating

4 parameters for each label pair. However, because the model needs to assign

dedicated parameters to different label combinations, modeling higher order label

dependencies becomes infeasible. The BR-rerank approach we propose relies on

boosted trees to automatically build high order interactions as tree learns their splits

on the binary representation of the label set – there is no need to allocate parameters

in advance. There is another CRF model designed specifically to capture exclusive

or hierarchical label relations [35]; this works only when the label dependency graph

is strict and a priori known.

CBM is a latent variable model and represents the joint as a mixture of

binary relevance models. However, it is hard to directly control the kinds of

dependencies CBM learns, or to enforce constraints in the prediction. For example,

CBM sometimes assigns high probability to the empty set even on dataset where

empty prediction is not allowed. There is no natural way to enforce the cardinality

constraint in CBM. In our CBM implementation, we have to add a dedicated rule in

the prediction procedure to avoid the empty prediction.

PCC decomposes the joint p(y|x) into a product of conditional probabilities

p(y1|x)p(y2|x, y1) · · · p(yL|x, y1, .., yL−1), and reduces a multi-label problem to L

binary problems, each of which learns a new label given all previous labels. However,

different label chaining orders can lead to different results, and to find the best

order is often a challenge. In BR-rerank, all labels are treated as features in the GB

calibrator training and they are completely symmetric.

The Structured Prediction Energy Network (SPEN) [15] uses deep neural
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networks to efficiently encode arbitrary relations between labels, which to large

degree avoids parameterization issue associated with pair-wise CRF, but it cannot

generate a confidence score for its MAP prediction as computing the normalization

constant is intractable. The Predict-and-Constraint method (PC) [19] specifically

handles cardinality constraint (but not other label constraints or relations) during

learning and prediction. Deep value network (DVN) [52] trains a neural network to

evaluate prediction candidates and then uses back-propagation to find the prediction

that leads to the maximum score. The idea is similar to our BR-rerank idea.

The difference is: DVN could only use the binary encoding of the label set, but

not any higher level features extracted from the label set, such as cardinality and

prior set probability. That is because its gradient based inference makes it very

difficult to directly incorporate such features. There are methods that seek to rank

labels [20, 41]. Our method differs from them in that we rank label sets as opposed

to individual labels, and we take into account label dependencies in the label set.

4.9 Experiment Results on Classification

We test the proposed BR-rerank classifier on 6 popular multi-label datasets (see

Appendix A for details). All datasets used in experiments contain at least a few

thousands instances. We do not take datasets with only a few hundred instances

as their testing performance tends to be quite unstable. We also do not consider

datasets with extremely large number of labels as our method is not designed for

extreme classification (our method aims to maximize set accuracy but on extreme

data it is very unlikely to predict the entire label set correctly due to large label

set cardinality and annotation noise). We compare BR-rerank with many other

well-known multi-label methods: Binary Relevance (BR) [107], 2BR [47, 106],

DBR [80], pair-wise Conditional Random Field (CRF) [44], Conditional Bernoulli

Mixture (CBM) [68], Probabilistic Classifier Chain (PCC) [97], Structured Prediction

Energy Network (SPEN) [15], PD-Sparse (PDS) [124], Predict-and-Constrain (PC)

[19], Deep value network (DVN) [52], Multi-label K-nearest neighbors (KNN) [130],

and Random k-label-sets (RAKEL) [108].

To make a fair comparison, we use logistic regressions as the underlying

learners for BR as well as the stage-1 models in BR-rerank, 2BR and DBR. We use

gradient boosting as the underlying learners in PCC as well as the stage-2 models in

BR-rerank, 2BR and DBR. Each dataset is randomly split into training, validation

and test subsets. All classifiers are trained on the training set, with hyper parameters

tuned on validation set. Appendix B and Appendix D contain implementation and
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Table 4.3: Prediction performance in terms of set accuracy (top) and instance F1

(bottom). Numbers are shown as percentages. Bold numbers are the best ones on

each dataset. “-” means the method could not finish within 24 hours on a server

with 56 cores and 256G RAM or 4 NVIDIA Tesla V100 GPUs. The ranking indicates

for each method, on average over datasets, what position its performance is (lower is

better). Our BR-rerank has the best average ranking on both measures. Note also

that BR is not the worst as one might naively assume. Hyper parameters for all

methods have been tuned on validation set.

Dataset BR BR-rerank 2BR DBR CBM CRF SPEN PDS DVN PC PCC RAKEL KNN

BIBT 16.6 21.5 16.1 20.2 22.9 23.3 14.8 16.1 16.2 20.3 21.4 18.3 8.4

OHSU 36.6 42.0 37.5 37.6 40.5 40.4 29.1 34.8 18.6 29.5 38.0 39.3 25.4

RCV1 44.5 53.2 42.3 45.8 55.3 53.8 27.5 40.8 13.7 39.7 48.7 46.0 46.2

TMC 30.4 33.3 32.1 31.7 30.8 28.2 26.7 23.4 20.3 23.0 31.3 27.6 18.9

WISE 52.9 60.5 51.8 55.8 61.0 46.4 - 52.4 28.3 - 55.9 3.5 2.4

MSCO 34.7 35.9 33.7 32.0 31.1 35.1 34.1 25.0 29.9 31.1 32.1 32.6 29.1

ranking 6.3 1.8 6.7 5.7 3.3 3.8 10.0 9.8 11.2 10.0 4.5 6.8 11.0

Dataset BR BR-rerank 2BR DBR CBM CRF SPEN PDS DVN PC PCC RAKEL KNN

BIBT 35.9 42.2 36.7 40.1 45.3 46.2 38.6 40.4 47.3 47.5 40.9 38.3 23.0

OHSU 62.9 67.5 62.9 61.5 67.2 65.6 58.8 66.4 60.0 60.5 61.7 62.3 48.6

RCV1 77.0 78.8 77.5 72.8 80.3 75.0 66.5 76.7 36.3 71.7 75.6 76.1 72.3

TMC 65.8 66.8 67.9 66.1 65.2 64.4 66.2 64.0 65.5 61.7 64.9 63.6 52.2

WISE 68.3 75.4 69.1 69.9 76.0 60.7 - 73.6 62.3 - 69.7 6.2 5.6

MSCO 73.0 73.2 72.6 69.6 70.0 73.9 73.2 64.8 72.7 72.7 69.6 71.7 68.2

ranking 6.3 2.5 5.5 7.3 4.0 5.7 8.3 6.8 7.5 8.8 7.5 8.7 12.0

hyper parameters tuning details. For BR-rerank and 2BR, since the stage-2 model

uses stage-1 model’s out-of-sample prediction as input, the stage-1 model and stage-2

model are trained on different parts of the training data. For DBR, since the stage-2

model training only takes the ground truth labels as input, both stage-1 model and

stage-2 model are trained on the whole training set. For evaluation, we report set

accuracy and instance F1, as defined in Section 2.1.

Test performance is reported in Table 4.3. As expected, by reranking

BR-independent-prediction candidates, BR-rerank outperforms BR significantly. We

also observe that generally BR-rerank only needs to rerank the top-10 candidates

from BR in order to achieve the best performance. On each dataset, we rank all

algorithms by performance, and report each algorithm’s average ranking across all

datasets. BR-rerank has the best average ranking with both metrics, followed by

CBM and CRF. We emphasize that with slightly better performance, BR-rerank is

noticeably simpler to use than CBM and CRF. CBM and CRF require implementing

dedicated training and prediction procedures, while BR-rerank can be ran by simply

combining existing machine learning libraries such as LIBLINEAR [37] for BR and

Xgboost [21] for GB. BR-rerank is also much faster than CBM and CRF. Its running
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time is determined mostly by its stage one, the BR classifier training. See Table 4.4

for a comparison.

Table 4.4: Comparison between BR-rerank and other methods in terms of training

time. Time is measured in seconds. All algorithms run multi-threaded on a server

with 56 cores.

Dataset BIBTEX OHSUMED RCV1 TMC WISE MSCOCO

BR 4 3 7 8 80 1380

BR-rerank 9 6 10 11 88 1393

CBM 64 210 70 224 1320 8520

CRF 353 268 1223 771 16363 14760

Figure 4.6 shows BR-rerank classification set accuracy as a function of number

of candidates K. When only the top-1 candidate is considered, BR-rerank is the

same as BR. Significant improvement can be achieve by simply considering and

reranking the top-10 candidates. Further increasing K does not give consistent

improvement and sometimes causes the performance to drop slightly.

Figure 4.6: BR-rerank classification set accuracy as a function of the number of

candidates K obtained from BR. Each subfigure is for a different dataset. X-axis is

the number of candidates K, and Y-axis is the set accuracy on test data.
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4.10 Calibration in the Presence of Noise

Standard calibration procedures (for binary/multi-class/multi-label classification)

assume the availability of a calibration dateset with clean ground truth annotations.

This is a natural requirement because the confidence (i.e., true accuracy of the

predictions in each confidence bucket) is computed by comparing the predictions

with the ground truth annotations. However, in many applications, such a clean

calibration dataset may be hard to obtain: all we have is a noisy calibration set with

random annotation errors.

All standard calibration procedures perform poorly on noisy data, since the

confidence calibrated on noisy data only reflects the probability of the prediction

matching the noisy annotation, as opposed to probability of getting the correct

prediction, and the latter is what we really care about. Consider the extreme case

where the classifier is 100% accurate but the annotation has 20% random noise.

Then a calibrator trained on noisy data would output 0.8 as the confidence value

for all predictions. In general, calibrators trained with standard procedures on noisy

data tend to be under-confident. How to obtain well calibrated confidence using

noisy data has great practical value but has not been studied before. Here we present

an idea for calibration on noisy labels.

4.10.1 Seeing Through Noise with Unbiased Estimation

We tackle this problem by modifying the existing calibration methods to take

into account the annotation noise rates. To do so, we assume that we have some

estimations of the noise rates in the label annotation. Note that the availability of

the noise rates is a much weaker assumption than the availability of the clean data.

These noise rates can be obtained either based on prior experience, or from a small

subset of data that went through the QA process. Let c ∈ [0, 1] be the confidence

that we want to output for a prediction, and let v ∈ {0, 1} be the correctness of

the prediction w.r.t. the clean ground truth, and let ṽ ∈ {0, 1} be the correctness

of the prediction w.r.t. the noisy annotation. When we train the calibrator, we

only observe ṽ directly, but not v. Let us introduce two parameters to describe the

noise: p(ṽ = 0|v = 1) = α and p(ṽ = 1|v = 0) = β. α is the probability that an

instance is mislabeled by the human annotator when the classifier’s prediction is

correct. When the classifier makes a correct prediction, the prediction matches the

noisy annotation with probability 1−α. The parameter β is the probability that the

human annotator mislabels an instance in such a way that the incorrect annotation

happens to match the classifier’s wrong prediction. Both parameters are necessary
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for theoretical analysis purpose, but in practice, we expect β to be close to 0 most

of the time as it is rare for the classifier and the annotator to make exactly the same

mistake at the same time. Also, we assume α + β < 1 otherwise learning becomes

impossible.

Ideally, one would like to match c with v by minimizing some loss function

�(c, v), such as square loss, or KL divergence. But since v is not directly observable,

one has to work with a surrogate loss �̃(c, ṽ). We want to define the surrogate loss �̃

in such a way that the expected loss �̃ w.r.t. the noisy annotation is the same as the

loss � w.r.t. the clean annotation, i.e., Eṽ �̃(c, ṽ) = �(c, v). This gives an unbiased

estimation of the true loss. The following lemma shows how to construct such a

surrogate loss:

Lemma 1 ([12, 11, 84]) Let �(c, v) be any loss function. Suppose p(ṽ = 0|v =

1) = α and p(ṽ = 1|v = 0) = β. Then if we define

�̃(c, ṽ) :=

{
(1−α)�(c,0)−β�(c,1)

1−α−β if ṽ = 0
(1−β)�(c,1)−α�(c,0)

1−α−β if ṽ = 1
(4.2)

we have, for any c, v, Eṽ �̃(c, ṽ) = �(c, v).

4.10.2 Surrogate for Square Loss

When � is the square loss �(c, v) = (c − v)2, the surrogate loss �̃(c, ṽ) has a simple

form:

�̃(c, ṽ) = (c− ṽ − β

1− α− β
)2 +M (4.3)

where M = ṽ−β
1−α−β − ( ṽ−β

1−α−β )
2 is a constant that does not depend on c and can be

safely ignored during optimization.

This surrogate has a natural interpretation: to train calibrators on noisy labels,

one can still use the square loss. But instead of directly fitting the noisy target ṽ,

one should fit the modified target ṽ−β
1−α−β , which takes into account the noise rates.

And on expectation, fitting this modified version of the noisy target is the same

as fitting the noise-free target. Based on this observation, we can modify existing

calibration methods that use square loss (e.g., isotonic regression and Gradient

Boosting regressor) to make it noise-robust: we use the existing training procedures

and simply change the training target from ṽ to ṽ−β
1−α−β .
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However, there is a caveat: the modified training target ṽ−β
1−α−β is either smaller

than 0 (for ṽ = 0) or greater than 1 (for ṽ = 1), so they cannot be interpreted

as confidence values themselves. One can view them as samples generated from

a random variable whose mean is the confidence value that we want to estimate

(which lies in the range [0, 1]). The higher the noise rates α and β are, the higher

the variance is, and the harder it is to estimate the mean accurately. Consider

the high noise rate scenario with α = 0.6 and β = 0.2. Then the training targets

(samples) are either -1 or 4. Without sufficient training data, it is possible for the

estimated mean (confidence) to lie outside of the desired range [0, 1] and lose its

probabilistic interpretation. This is especially a problem for high capacity calibrators

like GB which divide the feature space into regions and estimate the prediction

confidence using samples in each region. Therefore we need to find a way to force the

estimated confidence to lie in [0, 1]. The simplest way is to clip the value. Another

post-processing method is to ”soft-clip” by passing all results through the function

1/[1 + e−(x−0.5)]. While this function has the correct slope near 1/2 and properly

preserves input probabilities near 1/2 to have associated output probabilities that

are about the same, it does too much ”soft clipping” near 1 or 0. The third idea

is to first add a sigmoid transformation on top of the calibrator function and then

train the calibrator with sigmoid by minimizing squared error. However, as noted

in Section 4.5, adding the sigmoid this way makes the loss function non-convex

w.r.t. the calibration score and therefore is hard to optimize. In short, although the

surrogate loss for square loss has a simple form, we still lack a principled way to

bound the calibrator output in a y has not been well solved.

4.10.3 Surrogate for KL Divergence

When � is the KL divergence �(c, v) = − log(1 − c)I[v = 0] − log(c)I[v = 1], the

surrogate loss is in the form

�̃(c, ṽ) = −m[(1− ṽ − α) log(1− c) + (ṽ − β) log(c)] (4.4)

where m = 1
1−α−β .

Unlike the surrogate loss for square loss, the surrogate loss for KL-divergence

does not have a simple interpretation. In particular, it cannot be re-formulated

as a KL-divergence between the confidence and some modified target. However,

this surrogate loss has the advantage that it can be used together with the sigmoid

transformation to bound the confidence score while preserving the convexity.

Consider a linear calibrator (e.g., Platt scaling) or non-linear calibrator (e.g.,

GB) which internally computes some model score s and then applies sigmoid
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transformation to produce a confidence output c = 1
1+e−s . The surrogate loss (4.4)

can be rewritten with s as

�̃(s, ṽ) = m[(1− α− β) log(1 + e−s) + (1− ṽ − α)s] (4.5)

Its first and second order derivatives are

∂�̃(s, ṽ)

∂s
= m[c− ṽ + (1− c)β − cα] (4.6)

∂2�̃(s, ṽ)

∂s2
= m[(1− α− β)

e−s

(1 + e−s)2
] (4.7)

Clearly the second order derivative ∂2�̃(s,ṽ)
∂s2

> 0 and therefore �̃(s, ṽ) is a convex

function of s.

4.10.4 Noise Tolerant GB Calibrator

In Section 4.5, we have described two GB calibrator variants, one using ensemble

score as confidence and trained with square loss, and one applying sigmoid to the

ensemble score as confidence and trained with KL-divergence. When we have clean

calibration data, they perform similarly. When the calibration data is noisy, we

shall add the sigmoid transformation to the GB ensemble score to get a bounded

confidence and train the model with the surrogate loss for KL-divergence as we just

derived.

Given a calibration dataset {(xn,yn)}Nn=1 with noisy annotations, and a BR

classifier’s predictions ŷ1, ŷ2, . . . , ŷN on the calibration data, we train the noise

tolerant GB calibrator as follows. We transform each prediction ŷn into a vector un

by extracting various features from it, such as its raw BR probability, set cardinality,

set prior probability, and we create binary labels ṽn = I[ŷn = yn]. Then we train a

GB on the dataset {(un, ṽn)}Nn=1 with loss (4.5). The whole procedure is summarized

in Algorithm 4.3. Once GB training is done, it can be used to output calibrated

confidence: for a prediction y, we first transform it to a vector u, and then compute

confidence score as c = 1
1+e−F (u) , where F = h1 + h2 + · · ·+ hT is the GB ensemble.

4.10.5 Non-uniform Noise

The method described so far assumes that there are some uniform noise rates that

apply to all annotations. In practice, it is often the case that different annotations
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Algorithm 4.3 Robust Gradient Boosting Calibrator Training for Uniform Noise

Input: calibration dataset {(xn,yn)}Nn=1 together with BR’s predictions ŷn, n =

1, 2, ..., N .

1: for n = 1, 2, ..., N do

2: create feature vector un from ŷn and binary label ṽn = I[ŷn = yn]

3: end for

4: for iteration t = 1, 2, ..., T do

5: for n = 1, 2, ..., N do

6: compute the gradient of the loss (4.5) w.r.t. the current ensemble score

F (un): gn = ∂�̂(F (un),ṽn)
∂F (un)

= m[cn− ṽn+(1− cn)β− cnα], where cn = 1
1+e−F (un)

and m = 1
1−α−β

7: end for

8: fit a regression tree ht to the regression dataset {(un,−gn)}Nn=1

9: shrink the regression tree leaf output values by ρ: ht ← ρht

10: add the new regression tree ht to the ensemble: F = h1 + h2 + · · ·+ ht

11: end for

Output: final ensemble F = h1 + h2 + · · ·+ hT

have different levels of noise. For example, in medical billing, billing codes are

annotated by a combination of expert coders, regular coders and novice coders.

Clearly coders with different levels of skills have different annotation noise rates.

It is also often known who made which annotation. This information allows us to

assign different levels of noise rates to different groups of annotations.

To keep the mathematical derivation as general as possible, we assume each

annotation yn has its own noise rates αn and βn. How to set αn and βn properly

in practice is problem-dependent. For example, in the medical billing example

mentioned above, we may estimate the noise rates for each group of coders and

assign the same rates to annotations done by coders from the same group. Our

calibrator training procedure can be modified to handle non-uniform noise rates,

as shown in Algorithm 4.4. Notice that here we treat mn = 1
1−αn−βn

as a weight

defined for each instance, ignoring it when calculating gradients but considering it

when fitting regression trees.

4.10.6 Experiment Results

We test the proposed robust GB calibrator on MSCOCO dataset. We assume the

given annotations are clean and inject artificial noise to the annotations. Our first
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Algorithm 4.4 Robust Gradient Boosting Calibrator Training for Non-uniform Noise

Input: calibration dataset {(xn,yn)}Nn=1 together with BR’s predictions ŷn, n =

1, 2, ..., N .

1: for n = 1, 2, ..., N do

2: create feature vector un from ŷn and binary label ṽn = I[ŷn = yn]

3: end for

4: for iteration t = 1, 2, ..., T do

5: for n = 1, 2, ..., N do

6: compute the gradient of the loss (4.5) w.r.t. the current ensemble score

F (un): gn = ∂�̂(F (un),ṽn)
∂F (un)

= cn − ṽn + (1− cn)βn − cnαn, where cn = 1
1+e−F (un)

7: end for

8: fit a regression tree ht to the weighted regression dataset {(un,−gn,mn)}Nn=1,

where mn = 1
1−αn−βn

9: shrink the regression tree leaf output values by ρ: ht ← ρht

10: add the new regression tree ht to the ensemble: F = h1 + h2 + · · ·+ ht

11: end for

Output: final ensemble F = h1 + h2 + · · ·+ hT

experiment tests uniform noise. We set β = 0 and only keep α. For each instance in

the calibration data, with probability α = 0.2 we corrupt its annotation by randomly

adding or moving a label. To assess the calibrator’s true performance w.r.t. clean

annotations, we use the clean test set without noise for evaluation. For reference, we

also show the calibrator’s performance on the noisy calibration data. Note that our

ultimate goal is to produce calibrated confidence w.r.t. the clean data. Figure 4.7

shows that the non-robust calibrator, while producing calibrated scores w.r.t. noisy

labels, produces under-confident scores w.r.t. the clean labels. The robust calibrator,

while producing over-confident scores w.r.t. the noisy labels, produces calibrated

scores w.r.t. the clean labels. This shows that our robust calibration procedure

is able to see through the noise and estimate the true confidence measured w.r.t.

the unknown clean labels. Figure 4.8 shows similar trends when the noise rate is

increased from 0.2 to 0.5.

Our second experiment tests non-uniform noise. We simulate three coders with

different levels of skills. The expert coders has noise rate 0.1, the regular coder

has noise rate 0.3 and the novice coder has noise rate 0.5. Each coder annotates

a randomly chosen 1/3 of the data. For each instance in the calibration data,

we corrupt its labels according to its coder’s noise rate. We then train a robust

calibrator using these noise rates. Figure 4.9 shows that our robust calibration

procedure is also effective with non-uniform noise.
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(a) non-robust calibration;

evaluated on noisy data

(b) non-robust calibration;

evaluated on clean data

(c) robust calibration;

evaluated on noisy data

(d) robust calibration;

evaluated on clean data

Figure 4.7: Non-robust calibrator vs. robust calibrator trained on noisy MSCOCO

data with corrupted labels. Noise rate α = 0.2. Each calibrator is evaluated against

both clean data and noisy data.
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(a) non-robust calibration;

evaluated on noisy data

(b) non-robust calibration;

evaluated on clean data

(c) robust calibration;

evaluated on noisy data

(d) robust calibration;

evaluated on clean data

Figure 4.8: Non-robust calibrator vs. robust calibrator trained on noisy MSCOCO

data with corrupted labels. Noise rate α = 0.5. Each calibrator is evaluated against

both clean data and noisy data.
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(a) non-robust calibration;

evaluated on noisy data

(b) non-robust calibration;

evaluated on clean data

(c) robust calibration;

evaluated on noisy data

(d) robust calibration;

evaluated on clean data

Figure 4.9: Non-robust calibrator vs. robust calibrator trained on noisy MSCOCO

data with corrupted labels. Noise is non-uniform with three different rates 0.1, 0.3

and 0.5. Each calibrator is evaluated against both clean data and noisy data.
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4.11 Discussion and Future Work

The idea of first generating prediction candidates and then reranking them using

richer features has been considered in several natural language processing tasks,

including parsing [28] and machine translation [101]. Here we show that the

reranking idea, with properly designed models and features, is well suited for

multi-label classification as well. Generative Adversarial Nets (GANs) [48] also

employ two models, one for generating samples and one for judging these samples.

GANs are usually trained in an unsupervised fashion, and are mainly used for

generating new samples. By contrast, our BR-rerank is trained in supervised fashion,

and its main goal is to do classification. Also the two models in GANs are trained

simultaneously, while the two models in BR-rerank are trained in separate stages.

Besides isotonic regression and Platt scaling, there are also some recent

developments on binary, multi-class, and structured prediction calibration

methods [62, 49, 63, 22]. Our work instead focuses on how to design the calibrator

model and features for the BR multi-label classifier and how to take advantage of

the calibrated confidence to get better multi-label predictions.

The calibration and reranking method described in this chapter has been

focusing on the BR model and the set accuracy metric. There are several possible

extensions to consider:

• Applying the post-calibration and reranking procedure to other

multi-label models. Probabilistic multi-label models such as PCC, CRF and

CBM intend to capture label dependencies and estimate the joint distribution

in the first place. However, such models often produce uncalibrated confidence

for the predicted set on the test data, during to overfitting. Additional

calibration can be beneficial for these models as well. It would also be

interesting to test whether reranking can further improve these model’s

classification performance. We speculate that PCC and CBM may not easily

capture cardinality constraints, and the cardinality feature in the ranker may

be helpful.

• Calibrating and reranking w.r.t. other target metrics. In the current

form, the calibrator evaluates the chance of the predicted set matching the

ground truth exactly, and the reranking step finds the set with the highest

chance of being the perfect match. In some cases, set accuracy is not the

proper metric to optimize. For example, when the label vocabulary is very

large or when the annotation is very noisy, it is unlikely to have exact matches.

Metrics assigning partial scores, such as F1 metric, are more appropriate.
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How to calibrate and rerank w.r.t. F1 has great values both in theory and in

practice. We can generalize the notion of confidence and define it w.r.t. F1 as:

the confidence of the prediction w.r.t. F1 is the expected F1 of the prediction.

We speculate that the features used to estimate expected F1 will be different

than the features used to estimate expected set accuracy. For example, a

predicted set with unseen label combinations is unlikely to be the correct

set, but it may still have a high F1 score. So the prior probability feature is

informative only in estimating set accuracy, but not F1.

• Normalizing calibrated confidence scores. The calibrated confidence

scores among all possible sets generally do not sum to 1, even though the

uncalibrated confidence scores do. This is because the calibrator maps each

uncalibrated score to a calibrated one separately, and there is no post-

normalization to ensure all calibrated scores sum to 1. Explicit normalization

by summing over all possible prediction candidates is clearly intractable. This

lack of normalization may not be an issue in practice if one is only interested

in the confidence associated with the top-1 or top-K predictions. But from a

theoretical perspective, this is undesirable as one can no longer interpret the

calibrated confidence as a well defined probability distribution. To the best of

our knowledge, how to compute normalized calibrated confidence scores in an

efficient way has not been studied and it could be an interesting topic in itself.

• Calibration with unknown noise rates. The robust calibrator training

algorithm developed in this chapter assumes that the noise rates are known to

the training algorithm. Getting these noise rates in practice requires dedicated

QA process in which the given noisy annotations are re-judged. This demands

additional human effort. How to calibrate on noisy annotations when the noise

rates are unknown has great practical value. We speculate that it is possible to

estimate the noise rates from the noisy annotation alone without parallel clean

annotations. One potential idea is to do a grid search of the noise rates using

robust classifiers. There are robust classifier training procedures that take

into account noise rates [84]. One can train a series of robust classifiers with

different noise rates. Then the best noise rates can be chosen by evaluating

and comparing all robust classifiers on a noisy validation set, because the the

classification accuracy measured w.r.t. noisy labels is monotonically increasing

with the classification accuracy measured w.r.t. clean labels.
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Chapter 5

Conclusion

In this thesis, we considered the problem of multi-label classification, which assigns

a set of labels to each instance. For example, an article can belong to multiple

categories; an image can be associated with several tags; in medical billing, a patient

report is annotated with multiple diagnosis codes. The most popular approach,

named binary relevance (BR), trains one binary classifier to predict each label

separately. BR ignores label dependencies and often makes conflicting predictions,

such as tagging cat but not animal for an image. How to learn label dependencies

from data and train classifiers to account for such dependencies is the central

question in multi-label classification. This thesis described two new approaches

to multi-label classification which leverage label dependencies and achieve better

classification accuracy than BR and many other sophisticated methods.

The first approach, called conditional Bernoulli mixture (CBM), directly

estimates the joint probability distribution among all labels with a mixture model. It

consists of a multi-class classifier that assigns each instance to a mixture component

probabilistically and one BR model per component that estimates marginal label

probabilities. We showed that the joint distribution constructed this way is capable

of capturing label dependencies. This special model structure also allows for efficient

training, joint inference and marginal inference procedures designed to optimize

different metrics. Specifically we developed a EM based training procedure that

updates the multi-class classifier and all the binary classifiers in the model. By

leveraging the sparsity of the model structure we were able to further speed up

training. We developed a dynamic programming based joint label prediction method

to optimize set accuracy. We sent the CBM joint estimation to the GFM algorithm

to optimize instance F1 metric. We also showed that CBM can perform marginal

inference efficiently to optimize Hamming loss.
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The second approach, named BR-rerank, seeks to to improve both BR’s

confidence estimation and prediction through post calibration and reranking

procedures. BR-rerank takes the BR predicted set of labels and its product score

as features, extracts more features from the prediction itself to capture label

constraints, and applies Gradient Boosted Trees (GB) as a calibrator to map these

features into a calibrated confidence score. The GB calibrator not only produces

well-calibrated scores (aligned with accuracy and sharp), but also models label

interactions, correcting a critical flaw in BR. We further showed that reranking

label sets by the new calibrated confidence makes accurate set predictions on par

with state-of-the-art multi-label classifiers—yet calibrated, simpler, and faster. We

further considered the problem of calibration in the presence of annotation noise,

and developed a noise-robust calibration procedure by modifying the calibrator

training loss function.

Both CBM and BR-rerank are reduction methods: they transform a complex

multi-label classification problem to a series of standard binary classification,

multi-class classification and regression problems, which are easier to solve.

We implemented the proposed methods CBM and BR-rerank together with

many baseline methods and made the implementations publicly available at

https://github.com/cheng-li/pyramid.
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Datasets Used in Experiments

Table A.1: Datasets used in experiments

type source labels label sets features instances cardinality

BIBTEX bookmark [8] 159 2856 1836 7395 2.4

IMDB movie genre crawled 28 2564 27228 34157 2.4

MEDIAMILL video [8] 101 6555 120 43907 4.4

MSCOCO image [5] 80 25500 4096 123287 2.9

NUSWIDE image [8] 81 18430 128 269648 1.9

OHSUMED medical note [6] 23 1147 12639 13929 1.7

RCV1 news [8] 103 799 47236 6000 3.2

RCV1-2K news [4] 2456 13914 47236 779809 4.8

SCENE image [8] 6 15 294 2407 1.1

TMC2007 report [8] 22 1341 49060 28596 2.2

WISE article [7] 203 4253 301561 64857 1.4

WIPO patent [9] 188 151605 74435 1710 4.0
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Appendix B

Implementations Used in

Experiments

Table B.1 shows the code we ran in our experiments.

Method Implementation

BR, BR-rerank, 2BR, DBR,
ours: https://github.com/cheng-li/pyramid

PCC, CRF, CBM

RAKEL, KNN https://github.com/scikit-multilearn/scikit-multilearn

DVN https://github.com/gyglim/dvn

PC https://github.com/Natalybr/predict_and_constrain

PDS http://www.cs.utexas.edu/~xrhuang/PDSparse/

SPEN https://github.com/davidBelanger/SPEN

Table B.1: Implementations used in our experiments.
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Appendix C

Hyper Parameter Tuning in CBM

Experiments

For the experiments conducted in Section 3.6.3, we did cross-validation on the

training set to tune the following hyper parameters:

• LR Gaussian prior variance VLR, on grids {10−2, 10−1, 100, 101, 102, 103, 104, 105, 106};
• CRF Gaussian prior variance VCRF , on grids {10−2, 10−1, 100, 101, 102, 103, 104, 105, 106};
• CBM+LR number of componentsK, on grids {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
• CBM+GB number of componentsK, on grids {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}.

Tuning results are shown in Table C.1.

Table C.1: Tuned CBM Hyper Parameters

dataset VLR VCRF K (CBM+LR) K (CBM+GB)

SCENE 1.0 1.0 20 25

RCV1 106 1.0 45 45

TMC2007 10−1 10−1 40 20

MEDIAMILL 103 1 50 5

NUSWIDE 1.0 1.0 50 10

Our gradient boosting implementation uses regression trees of 5 leaves and

shrinkage rate 0.1 as default values. For PCC, the beam search width is set to be 15,

as suggested in [65].
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Appendix D

Hyper Parameters Tuning in

BR-rerank Experiments

• BR: elastic-net regularization penalty strength λ ∈ {0.0001, 0.000001}; L1
ratio ∈ {0.1, 0.5}; training iteration is decided by monitoring the validation

performance after each iteration.

• GB calibrator: shrinkage = 0.1; regression tree weak learner has 10 leaves;

the minimum number of instances per leaf is 5; training iteration is tuned on

validation set.

• BR-rerank: apart from setting the hyper parameters mentioned in GB

calibrator, we also set the number of candidates K = 10.

• 2BR and DBR: we use the validation data to decide whether the stage-2 model

should take instance features x as par of the input; for the GB base learner, we

tune the number of training iterations using validation data; we set shrinkage

= 0.1; regression tree weak learner has 10 leaves; the minimum number of

instances per leaf is 5.

• Probabilistic Classifier Chains (PCC): following the common practice, labels

are arranged by decreasing frequency; for the GB base learner, we tune the

number of training iterations using validation data; we set shrinkage = 0.1;

regression tree weak learner has 10 leaves; the minimum number of instances

per leaf is 5; for prediction, we use beam search with width 5.

• Random k-label-sets (RAKEL): The number of labels used in each labelset

K ∈ {2, 4, 6, . . . , 30}.
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• Multi-label k Nearest Neighbors (KNN): number of neighbors k ∈ {1, 3, 5, 7,
9, 11, 13, 15, 17, 19, 21}; the smoothing parameter s ∈ {0.5, 0.7, 1.0}.

• Deep Value Network (DVN): whether or not to includes a linear layer after the

two-layer perceptron.

• Predict and Constrain (PC): number of hidden units for the linear part

h ∈ {100, 150, 200}.
• PD-Sparse (PDS): L1 regularization weight, λ ∈ {1, 0.1, 0.01, 0.001, 0.0001}; in
order to predict a subset of labels as opposed to simply ranking labels, we tune

the score threshold.

• SPEN: we use the hidden layer sizes mentioned in the original paper.
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Appendix E

Experiments with Monotonicity

and Another GB Variant

We conducted additional experiments on imposing partial monotonicity in GB.

Since the GB score is the sum of regression tree scores, it suffices to impose

monotonicity constraints in each tree. We follow the method implemented in the

xgboost package [21] and it works as follows: We associate a lower bound and an

upper bound with each tree node (including intermediate nodes). As the tree grows,

each node first inherits its parent’s bounds and then tightens the bounds as new

constraints are introduced. A leaf always outputs a value within its bounds. When

a node is split into two children by a monotonic feature, assuming data with smaller

feature value goes left, we compute the middle point between the output of the left

child and the output of the right child (they are treated as leaves), and set the upper

bound of the left child and the lower bound of the right child to be this middle

point. When a node is split with a non-monotonic feature, its children just inherit

its bounds without further tightening.

We also tested anther variant of GB, named GB-KL, which has a sigmoid

transformation on top of the ensemble score and is trained by minimizing KL

divergence. We compare it with GB-MSE, which does not employ the sigmoid

transformation and is trained by minimizing square error.

We tested all 4 configurations of calibrator and monotonicity and the results are

shown in Tables E.1,E.2,E.3,E.4. All 4 configurations have similar calibration and

prediction performance.
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Table E.1: BR prediction calibration performance in terms of MSE (the smaller the

better).

calibrator monotonicity BIBTEX OHSUMED RCV1 TMC WISE MSCOCO

GB-MSE no 0.0682 0.1889 0.1229 0.1800 0.1472 0.1434

GB-MSE yes 0.0653 0.1854 0.1227 0.1783 0.1468 0.1438

GB-KL no 0.0696 0.1904 0.1260 0.1794 0.1476 0.1437

GB-KL yes 0.0666 0.1850 0.1253 0.1772 0.1467 0.1436

Table E.2: BR prediction calibration performance in terms of sharpness (the bigger

the better).

calibrator monotonicity BIBTEX OHSUMED RCV1 TMC WISE MSCOCO

GB-MSE no 0.0719 0.0467 0.1262 0.0319 0.1022 0.0825

GB-MSE yes 0.0783 0.0475 0.1366 0.0347 0.1029 0.0823

GB-KL no 0.0753 0.0475 0.1236 0.0330 0.1014 0.0824

GB-KL yes 0.0782 0.0496 0.1299 0.0351 0.1028 0.0824

Table E.3: Prediction performance of BR-rerank in terms of set accuracy.

calibrator monotonicity BIBTEX OHSUMED RCV1 TMC WISE MSCOCO

GB-MSE no 21.5 42.0 53.2 33.3 60.5 35.9

GB-MSE yes 22.1 41.9 52.7 32.9 60.4 36.0

GB-KL no 21.1 41.1 51.8 33.0 60.3 36.2

GB-KL yes 22.1 41.4 52.2 33.1 60.5 36.1

Table E.4: Prediction performance of BR-rerank in terms of F1 score.

calibrator monotonicity BIBTEX OHSUMED RCV1 TMC WISE MSCOCO

GB-MSE no 42.2 67.5 78.8 66.8 75.4 73.2

GB-MSE yes 43.1 67.2 78.6 66.6 75.5 73.4

GB-KL no 41.8 66.8 78.2 66.4 75.1 73.3

GB-KL yes 42.4 67.1 78.2 66.5 75.3 73.3
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[22] Tongfei Chen, Jǐŕı Navrátil, Vijay Iyengar, and Karthikeyan Shanmugam.

Confidence scoring using whitebox meta-models with linear classifier probes.

arXiv preprint arXiv:1805.05396, 2018.

[23] Yao-Nan Chen and Hsuan-Tien Lin. Feature-aware label space dimension

reduction for multi-label classification. In Advances in Neural Information

Processing Systems, pages 1529–1537, 2012.
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